冻融循环作用下不同含水率砂岩抗拉特性研究

苗浩东, 任富强

苗浩东,任富强. 冻融循环作用下不同含水率砂岩抗拉特性研究[J]. 工矿自动化,2023,49(5):133-138, 152. DOI: 10.13272/j.issn.1671-251x.2022070074
引用本文: 苗浩东,任富强. 冻融循环作用下不同含水率砂岩抗拉特性研究[J]. 工矿自动化,2023,49(5):133-138, 152. DOI: 10.13272/j.issn.1671-251x.2022070074
MIAO Haodong, REN Fuqiang. Study on the tensile properties of sandstone with different water contents under freeze-thaw cycles[J]. Journal of Mine Automation,2023,49(5):133-138, 152. DOI: 10.13272/j.issn.1671-251x.2022070074
Citation: MIAO Haodong, REN Fuqiang. Study on the tensile properties of sandstone with different water contents under freeze-thaw cycles[J]. Journal of Mine Automation,2023,49(5):133-138, 152. DOI: 10.13272/j.issn.1671-251x.2022070074

冻融循环作用下不同含水率砂岩抗拉特性研究

基金项目: 国家自然科学基金项目(51974187);辽宁省博士启动基金项目(2022-BS-280)。
详细信息
    作者简介:

    苗浩东(1996—),男,山东临沂人,硕士研究生,主要研究方向为岩体边坡稳定性,E-mail:767266664@qq.com

    通讯作者:

    任富强(1992—),男,山西吕梁人,副教授,博士,主要研究方向为矿山岩体边坡力学,E-mail:renfuqiang@ustl.edu.cn

  • 中图分类号: TD315

Study on the tensile properties of sandstone with different water contents under freeze-thaw cycles

  • 摘要: 我国寒冷地区矿山受冻融循环作用的影响,岩石内部因不均匀胀缩而产生裂隙,同时裂隙间水分冻胀使得裂隙扩大,造成岩石破坏,进而影响边坡的稳定性。为研究冻融循环作用下不同含水率砂岩的抗拉特性,对不同冻融循环次数(0,10,20,30次)下不同含水率(0,35%,70%,100%)砂岩进行巴西劈裂试验,同时进行声发射监测,分析了含水率和冻融循环作用对砂岩抗拉特性的影响。结果表明:① 当砂岩含水率小于35%时,砂岩抗拉强度降低幅度较为缓慢,含水率大于35%时抗拉强度降低幅度变快。② 砂岩声发射信号峰值频率分布有明显频带特征,含水率增大会使砂岩声发射信号峰值频率主要集中区延后出现。③ 随着冻融次数增多,非完全饱水砂岩的声发射振铃计数和累计能量峰值不断降低,完全饱水砂岩的声发射信号减少且声发射振铃计数峰值呈先升后降趋势,含水率相同的砂岩声发射信号低峰值频率从50 kHz降低到10 kHz以下,其中冻融10次时砂岩加载过程中的声发射信号以峰值频率小于20 kHz的低频信号为主,冻融20次后砂岩声发射信号峰值频率降到10 kHz以下。④ 砂岩整个加载过程以低频低幅值声发射信号为主,主要发生小尺度破裂。
    Abstract: Mines in cold regions of China are affected by freeze-thaw cycles, resulting in uneven expansion and contraction of rocks, leading to the formation of cracks. At the same time, the expansion of cracks due to water frost heave between cracks leads to rock damage. In turn, it affects the stability of slopes. To study the tensile properties of sandstone with different water contents under freeze-thaw cycles, Brazilian splitting tests are conducted on sandstone with different water contents (0, 35%, 70%, 100%) under different freeze-thaw cycles (0, 10, 20, 30 times). Acoustic emission monitoring is also conducted to analyze the effects of water content and freeze-thaw cycles on the tensile properties of sandstone. The results show the following points. ① When the water content of sandstone is less than 35%, the decrease in tensile strength of sandstone is relatively slow. When the water content is greater than 35%, the decrease in tensile strength becomes faster. ② The peak frequency distribution of sandstone acoustic emission signals has obvious frequency band features. The increase in water content will delay the appearance of the main concentration area of sandstone acoustic emission signal peak frequency. ③ As the number of freeze-thaw cycles increases, the acoustic emission ringing count and cumulative energy peak of non-fully saturated sandstone continue to decrease. The acoustic emission signal of fully saturated sandstone decreases, and the peak acoustic emission ringing count shows a trend of first increasing and then decreasing. The low peak frequency of the acoustic emission signal of sandstone with the same water content decreases from 50 kHz to below 10 kHz. The acoustic emission signals during the loading process of sandstone when freeze-thaw cycle is 10 are mainly low-frequency signals with a peak frequency of less than 20 kHz. After 20 freeze-thaw cycles, the peak frequency of the acoustic emission signals of sandstone decreases to below 10 kHz. ④ The entire loading process of sandstone is mainly characterized by low-frequency and low-amplitude acoustic emission signals, mainly resulting in small-scale cracks.
  • 图  1   不同冻融次数下砂岩含水率−抗拉强度关系曲线

    Figure  1.   Relationship curve of water content and tensile strength of sandstone under different freeze-thaw cycles

    图  2   冻融循环作用下不同含水率砂岩声发射振铃计数、累计能量和荷载随时间变化曲线

    Figure  2.   Variation curve of acoustic emission ringing count, cumulative energy and load of sandstone with different water content with time under freeze-thaw cycle

    图  3   冻融循环作用下不同含水率砂岩声发射振铃计数、累计能量峰值统计

    Figure  3.   Acoustic emission ringing count and cumulative energy peak statistics of sandstone with different water content under freeze-thaw cycle

    图  4   冻融循环作用下不同含水率砂岩声发射信号峰值频率、幅值与荷载随时间变化曲线

    Figure  4.   Variation curve of acoustic emission signal peak frequency, amplitude and load of sandstone with different water content with time under freeze-thaw cycle

    图  5   冻融循环作用下不同含水率砂岩的不同幅频声发射信号占比统计

    Figure  5.   Statistics of proportion of different amplitude-frequency acoustic emission signals of sandstone with different water content under freeze-thaw cycle

    表  1   试样编号

    Table  1   Sample number

    编号含水率/%冻融次数编号含水率/%冻融次数
    0−0000−20020
    35−035035−203520
    70−070070−207020
    100−01000100−2010020
    0−100100−30030
    35−10351035−303530
    70−10701070−307030
    100−1010010100−3010030
    下载: 导出CSV
  • [1] 杨阳. 低温作用下岩石动态力学性能试验研究[D]. 北京: 中国矿业大学(北京), 2016.

    YANG Yang. Experimental study on dynamic mechanical properties of rock under low temperature[D]. Beijing: China University of Mining and Technology-Beijing, 2016

    [2] 杨更社,申艳军,贾海梁,等. 冻融环境下岩体损伤力学特性多尺度研究及进展[J]. 岩石力学与工程学报,2018,37(3):545-563. DOI: 10.13722/j.cnki.jrme.2017.1295

    YANG Gengshe,SHEN Yanjun,JIA Hailiang,et al. Research progress and tendency in characteristics of multi-scale damage mechanics of rock under freezing-thawing[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(3):545-563. DOI: 10.13722/j.cnki.jrme.2017.1295

    [3] 戚利荣,王家鼎,张登飞,等. 冻融循环作用下花岗岩损伤的宏微观尺度研究[J]. 水文地质工程地质,2021,48(5):65-73. DOI: 10.16030/j.cnki.issn.1000-3665.202103073

    QI Lirong,WANG Jiading,ZHANG Dengfei,et al. A study of granite damage in the macro and microscopic scales under freezing-thawing cycles[J]. Hydrogeology & Engineering Geology,2021,48(5):65-73. DOI: 10.16030/j.cnki.issn.1000-3665.202103073

    [4] 刘波,孙颜顶,袁艺峰,等. 不同含水率冻结砂岩强度特性及强度强化机制[J]. 中国矿业大学学报,2020,49(6):1085-1093,1127. DOI: 10.13247/j.cnki.jcumt.001210

    LIU Bo,SUN Yanding,YUAN Yifeng,et al. Strength characteristics of frozen sandstone with different water content and its strengthening mechanism[J]. Journal of China University of Mining & Technology,2020,49(6):1085-1093,1127. DOI: 10.13247/j.cnki.jcumt.001210

    [5] 万亿,陈国庆,孙祥,等. 冻融后不同含水率红砂岩三轴蠕变特性及损伤模型研究[J]. 岩土工程学报,2021,43(8):1463-1472. DOI: 10.11779/CJGE202108011

    WAN Yi,CHEN Guoqing,SUN Xiang,et al. Triaxial creep characteristics and damage model for red sandstone subjected to freeze-thaw cycles under different water contents[J]. Chinese Journal of Geotechnical Engineering,2021,43(8):1463-1472. DOI: 10.11779/CJGE202108011

    [6] 陈国庆,简大华,陈宇航,等. 不同含水率冻融后红砂岩剪切蠕变特性[J]. 岩土工程学报,2021,43(4):661-669. DOI: 10.11779/CJGE202104008

    CHEN Guoqing,JIAN Dahua,CHEN Yuhang,et al. Shear creep characteristics of red sandstone after freeze-thaw with different water contents[J]. Chinese Journal of Geotechnical Engineering,2021,43(4):661-669. DOI: 10.11779/CJGE202104008

    [7] 宋勇军,张磊涛,任建喜,等. 冻融环境下红砂岩三轴蠕变特性及其模型研究[J]. 岩土工程学报,2021,43(5):841-849. DOI: 10.11779/CJGE202105007

    SONG Yongjun,ZHANG Leitao,REN Jianxi,et al. Triaxial creep properties and model of red sandstone under freeze-thaw environment[J]. Chinese Journal of Geotechnical Engineering,2021,43(5):841-849. DOI: 10.11779/CJGE202105007

    [8] 刘海康,张思渊,张鑫鑫. 不同初始含水率下砂岩冻融劣化特性试验研究[J]. 科学技术与工程,2017,17(26):322-327. DOI: 10.3969/j.issn.1671-1815.2017.26.054

    LIU Haikang,ZHANG Siyuan,ZHANG Xinxin. Experimental study of freeze-thaw deterioration specialty of sandstone in different initial moisture content[J]. Science Technology and Engineering,2017,17(26):322-327. DOI: 10.3969/j.issn.1671-1815.2017.26.054

    [9] 苏占东,孙进忠,夏京,等. 冻融循环对花岗岩声发射特性影响的试验研究[J]. 岩石力学与工程学报,2019,38(5):865-874. DOI: 10.13722/j.cnki.jrme.2018.0953

    SU Zhandong,SUN Jinzhong,XIA Jing,et al. Experimental research of the effect of freezing-thawing cycles on acoustic emission characteristics of granite[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(5):865-874. DOI: 10.13722/j.cnki.jrme.2018.0953

    [10] 李富平,王浩程,夏冬,等. 冻融作用对黄砂岩声发射特征影响的试验研究[J]. 矿业研究与开发,2021,41(2):67-73. DOI: 10.13827/j.cnki.kyyk.2021.02.012

    LI Fuping,WANG Haocheng,XIA Dong,et al. Experimental study on the influence of freeze-thaw effect on acoustic emission characteristics of yellow sandstone[J]. Mining Research and Development,2021,41(2):67-73. DOI: 10.13827/j.cnki.kyyk.2021.02.012

    [11] 刘享华,张科,刘文连. 荷载与冻融共同作用对多裂隙砂岩能量转化与损伤特性的影响[J]. 应用基础与工程科学学报,2023,31(3):715-730.

    LIU Xianghua,ZHANG Ke,LIU Wenlian. Influence of coupling action of loading and freeze-thaw cycles on the energy conversion and damage characteristics of sandstone containing multiple flaws[J]. Journal of Basic Science and Engineering,2023,31(3):715-730.

    [12] 谭皓,宋勇军,郭玺玺,等. 冻融裂隙砂岩细观损伤与应变局部化研究[J]. 岩石力学与工程学报,2022,41(12):2485-2496.

    TAN Hao,SONG Yongjun,GUO Xixi,et al. Research on meso-damage and strain localization of fractured sandstone after freeze-thaw cycles[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(12):2485-2496.

    [13] 王飞,高明忠,邱冠豪,等. 初始损伤−载荷−冻融作用下红砂岩的孔隙结构及力学特性[J]. 工程科学与技术,2022,54(6):194-203.

    WANG Fei,GAO Mingzhong,QIU Guanhao,et al. Pore structure and mechanical properties of red sandstone under the action of initial damage-load-freeze-thaw[J]. Advanced Engineering Sciences,2022,54(6):194-203.

    [14] 朱谭谭,李昂,黄达,等. 应力-冻融耦合作用下砂岩变形与损伤特征研究[J]. 岩石力学与工程学报,2023,42(2):342-351.

    ZHU Tantan,LI Ang,HUANG Da,et al. Deformation and damage characteristics of sandstone under the combined action of stress freeze-thaw cycles[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(2):342-351.

    [15] 贾蓬,毛松泽,孙占阳,等. 冻融损伤砂岩的能量演化及分段本构模型[J]. 中南大学学报(自然科学版),2023,54(3):908-919.

    JIA Peng,MAO Songze,SUN Zhanyang,et al. Energy evolution and piecewise constitutive model of freeze-thaw damaged sandstone[J]. Journal of Central South University(Science and Technology),2023,54(3):908-919.

    [16] 张慧梅,杨更社. 岩石冻融循环及抗拉特性试验研究[J]. 西安科技大学学报,2012,32(6):691-695. DOI: 10.3969/j.issn.1672-9315.2012.06.005

    ZHANG Huimei,YANG Gengshe. Research on freeze-thaw cycle and anti-tensile characteristics test[J]. Journal of Xi'an University of Science and Technology,2012,32(6):691-695. DOI: 10.3969/j.issn.1672-9315.2012.06.005

    [17] 孟凡东,翟越,李宇白,等. 冻融循环作用后砂岩的动态抗拉性能及能量演化试验研究[J]. 岩石力学与工程学报,2021,40(12):2445-2453. DOI: 10.13722/j.cnki.jrme.2021.0289

    MENG Fandong,ZHAI Yue,LI Yubai,et al. Experimental study on dynamic tensile properties and energy evolution of sandstone after freeze-thaw cycles[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(12):2445-2453. DOI: 10.13722/j.cnki.jrme.2021.0289

    [18] 刘慧,蔺江昊,杨更社,等. 冻融循环作用下砂岩受拉损伤特性的声发射试验[J]. 采矿与安全工程学报,2021,38(4):830-839. DOI: 10.13545/j.cnki.jmse.2020.0192

    LIU Hui,LIN Jianghao,YANG Gengshe,et al. Acoustic emission test on tensile damage characteristics of sandstone under freeze-thaw cycle[J]. Journal of Mining & Safety Engineering,2021,38(4):830-839. DOI: 10.13545/j.cnki.jmse.2020.0192

    [19] 刘德俊,浦海,沙子恒,等. 冻融循环条件下砂岩动态拉伸力学特性试验研究[J]. 煤炭科学技术,2022,50(8):60-67.

    LIU Dejun,PU Hai,SHA Ziheng,et al. Experimental study on dynamic tensile mechanical properties of sandstone under freeze-thaw cycles[J]. Coal Science and Technology,2022,50(8):60-67.

    [20] 吴贤振,刘建伟,刘祥鑫,等. 岩石声发射振铃累计计数与损伤本构模型的耦合关系探究[J]. 采矿与安全工程学报,2015,32(1):28-34,41. DOI: 10.13545/j.cnki.jmse.2015.01.005

    WU Xianzhen,LIU Jianwei,LIU Xiangxin,et al. Study on the coupled relationship between the AE accumulative ring-down count and damage constitutive model of rock[J]. Journal of Mining & Safety Engineering,2015,32(1):28-34,41. DOI: 10.13545/j.cnki.jmse.2015.01.005

    [21] 张艳博,梁鹏,田宝柱,等. 花岗岩灾变声发射信号多参量耦合分析及主破裂前兆特征试验研究[J]. 岩石力学与工程学报,2016,35(11):2248-2258. DOI: 10.13722/j.cnki.jrme.2016.0251

    ZHANG Yanbo,LIANG Peng,TIAN Baozhu,et al. Multi parameter coupling analysis of acoustic emission signals of granite disaster and the precursor characteristics of the main rupture[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(11):2248-2258. DOI: 10.13722/j.cnki.jrme.2016.0251

  • 期刊类型引用(20)

    1. 黄刚,韩云春,余国锋,罗勇,任波,叶赞,王立超,赵靖,徐一帆. 全光纤微震监测技术在底板突水监测中的应用研究. 工矿自动化. 2024(06): 36-45 . 本站查看
    2. 李飞龙,丁文博,张喜军. 基于光纤通信的无线物联网井下传感网络设计与优化研究. 中国煤炭. 2024(S1): 63-67 . 百度学术
    3. 孟广瑞,张璐,张仁生. 煤矿安全监测系统数据传输一致性设计与实现. 工矿自动化. 2023(S1): 36-38+107 . 本站查看
    4. 田茂林. 矿用激光甲烷传感器的设计及应用研究. 内蒙古石油化工. 2022(04): 20-22 . 百度学术
    5. 潘晓博. 基于LoRa的低功耗瓦斯浓度分布式监测系统设计. 工矿自动化. 2021(06): 103-108 . 本站查看
    6. 肖国强,范新丽,马砺,骆伟,吴明明. 矿井火灾环境信息动态感知与应急隔离系统. 工矿自动化. 2021(09): 65-69 . 本站查看
    7. 冀汶莉,郗刘涛,王斌. 面向不平衡数据集的煤矿监测系统异常数据识别方法. 工矿自动化. 2020(01): 18-25 . 本站查看
    8. 张达,王济农,冀虎,纪浩,赵云峰. 矿山微功耗安全监测物联网系统的研究与应用. 通信学报. 2020(02): 44-57 . 百度学术
    9. 唐年庆,陈晓燕,潘锐. 应用于物联网的光纤布里渊传感系统设计. 激光杂志. 2020(03): 29-33 . 百度学术
    10. 苟怡. 分布式光纤多参数监测及煤矿井下应用趋势探讨. 自动化技术与应用. 2020(04): 114-118+128 . 百度学术
    11. 张科星. 基于物联网的传感器失效节点空洞修复方法研究. 山西大同大学学报(自然科学版). 2020(02): 10-13 . 百度学术
    12. 丁恩杰,廖玉波,张雷,刘忠育. 煤矿信息化建设回顾与展望. 工矿自动化. 2020(07): 5-11 . 本站查看
    13. 张月娟. 基于物联网的矿山安全监控管理信息系统设计. 世界有色金属. 2020(11): 11-12 . 百度学术
    14. 张聪瑞,杨旭春,王树勋,黄刚. 高海拔矿山井下运输环境感知技术研究. 金属矿山. 2020(10): 111-117 . 百度学术
    15. 田臣,李斌. 基于物联网的煤自燃监测预警与火灾防治技术. 内蒙古煤炭经济. 2020(11): 108-109 . 百度学术
    16. 张德胜. 基于TDLAS的一氧化碳传感器设计. 单片机与嵌入式系统应用. 2020(12): 62-65+69 . 百度学术
    17. 胡非,李东洋,曲睿婷,周毅. 面向物联网传感器的网络信息安全监测系统设计. 中国新通信. 2019(10): 130 . 百度学术
    18. 王璐. 煤矿安全监控系统中无线激光甲烷传感器的研究与设计. 煤炭技术. 2019(08): 154-158 . 百度学术
    19. 张子豪,安颖. 电气设备光纤光栅自动测温系统仿真. 计算机仿真. 2019(09): 277-281 . 百度学术
    20. 徐恒,王建平,李奇越,朱程辉. 基于多维尺度的矿山无线传感器网络定位算法. 电子测量与仪器学报. 2018(09): 63-71 . 百度学术

    其他类型引用(11)

图(5)  /  表(1)
计量
  • 文章访问数:  241
  • HTML全文浏览量:  61
  • PDF下载量:  12
  • 被引次数: 31
出版历程
  • 收稿日期:  2022-07-26
  • 修回日期:  2023-05-15
  • 网络出版日期:  2022-11-27
  • 刊出日期:  2023-05-24

目录

    /

    返回文章
    返回