留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液压支架顶梁裂纹弱磁无损检测分析

刘宁 辛嵩 贺敏 陈秋艳

刘宁,辛嵩,贺敏,等. 液压支架顶梁裂纹弱磁无损检测分析[J]. 工矿自动化,2022,48(9):84-91, 133.  doi: 10.13272/j.issn.1671-251x.2022060108
引用本文: 刘宁,辛嵩,贺敏,等. 液压支架顶梁裂纹弱磁无损检测分析[J]. 工矿自动化,2022,48(9):84-91, 133.  doi: 10.13272/j.issn.1671-251x.2022060108
LIU Ning, XIN Song, HE Min, et al. Analysis of weak magnetic nondestructive testing for cracks in the top beam of hydraulic support[J]. Journal of Mine Automation,2022,48(9):84-91, 133.  doi: 10.13272/j.issn.1671-251x.2022060108
Citation: LIU Ning, XIN Song, HE Min, et al. Analysis of weak magnetic nondestructive testing for cracks in the top beam of hydraulic support[J]. Journal of Mine Automation,2022,48(9):84-91, 133.  doi: 10.13272/j.issn.1671-251x.2022060108

液压支架顶梁裂纹弱磁无损检测分析

doi: 10.13272/j.issn.1671-251x.2022060108
基金项目: 山东省自然科学基金资助项目(ZR2019BEE041)。
详细信息
    作者简介:

    刘宁(1997—),男,山东临沂人,硕士研究生,主要研究方向为弱磁无损检测,E-mail:1611075587@qq.com

    通讯作者:

    贺敏(1989—),男,山东济宁人,讲师,博士,主要研究方向为无损检测技术及应用,E-mail:hemin2009mail@163.com

  • 中图分类号: TD355.4

Analysis of weak magnetic nondestructive testing for cracks in the top beam of hydraulic support

  • 摘要: 针对目前液压支架裂纹检测方法操作繁琐的问题,提出了一种基于地磁场激励的液压支架顶梁裂纹弱磁无损检测方法。首先运用COMSOL Multiphysics 仿真软件对液压支架顶梁裂纹处的应力场进行分析,然后基于弱磁无损检测原理,在仿真空间内加载地磁场,得到顶梁含裂纹缺陷材料磁化后与地磁场形成的叠加场,对该叠加场进行分析。结果表明:① 在液压支架顶梁缺陷处有应力集中现象,且越靠下应力越大,裂纹由表及里向两侧拓展,及时发现表面裂纹可有效减小顶梁失效风险。② 当裂纹缺陷的长度与深度固定时,不同宽度裂纹的磁通密度模曲线的波谷与波峰的水平间距和波峰值随宽度的增加而增大,波谷值随宽度的增加而先减小后增大。磁通密度模变化的幅值随裂纹宽度的增加而增大,磁通密度模相邻最大谷峰差的变化率随宽度的增加而减小。磁通密度的变化幅值与裂纹宽度的变化呈正相关。③ 当裂纹缺陷的长度与宽度固定时,不同深度裂纹的磁通密度模曲线的波谷值差异较小,左侧波峰值随宽度的增加而增大,右侧波峰值随宽度的增加而减小。随着裂纹深度的增加,磁通密度模的变化幅值增大,磁通密度模相邻最大谷峰差的变化率几乎不变。磁通密度的变化幅值与裂纹深度的变化呈正相关。相较于裂纹的深度变化,磁通密度对裂纹的宽度变化更为敏感。④ 当裂纹缺陷的长度、宽度与深度固定时,改变裂纹的走向并不影响对裂纹缺陷处的判断。

     

  • 图  1  弱磁无损检测原理

    Figure  1.  Detection principle of weak magnetic nondestructive testing

    图  2  液压支架掩护梁与顶梁常见断裂形式

    Figure  2.  Common crack forms of hydraulic support cover beam and top beam

    图  3  液压支架裂纹模型

    Figure  3.  Hydraulic support crack model

    图  4  Q550钢板不同走向的裂纹缺陷模型

    Figure  4.  Crack defect models for Q550 steel plate at different orientations

    图  5  网格划分

    Figure  5.  Grid division

    图  6  地磁场加载

    Figure  6.  Geomagnetic field loading

    图  7  液压支架应力分布

    Figure  7.  Hydraulic support stress distribution

    图  8  不同载荷时裂纹上部截线的应力

    Figure  8.  Stress on the upper section of the crack under different loads

    图  10  不同载荷时裂纹垂直截线的应力

    Figure  10.  Stress on the vertical cross-section of the crack under different loads

    图  9  不同载荷时裂纹中部截线的应力

    Figure  9.  Stress on the middle section of the crack under different loads

    图  11  Q550钢板磁通密度

    Figure  11.  Q550 steel plate magnetic flux density

    图  12  不同宽度裂纹的磁通密度模及其相邻最大谷峰差

    Figure  12.  Magnetic flux density modes and adjacent maximum peak differences for cracks of different widths

    图  13  不同宽度裂纹的磁通密度x分量及其相邻最大谷峰差

    Figure  13.  The x-component of magnetic flux density and adjacent maximum peak difference for cracks of different widths

    图  14  不同宽度裂纹的磁通密度z 分量及其相邻最大谷峰差

    Figure  14.  The z-component of magnetic flux density and adjacent maximum peak differences for cracks of different widths

    图  15  不同深度裂纹的磁通密度模及其相邻最大谷峰差

    Figure  15.  Magnetic flux density modes and adjacent maximum peak differences for cracks of different depths

    图  16  不同深度裂纹的磁通密度x分量及其相邻最大谷峰差

    Figure  16.  The x-component of magnetic flux density and adjacent maximum peak difference for cracks of different depths

    图  17  不同深度裂纹的磁通密度z分量及其相邻最大谷峰差

    Figure  17.  The z-component of magnetic flux density and adjacent maximum peak differences for cracks of different depths

    图  18  不同走向裂纹的磁通密度模及其相邻最大谷峰差

    Figure  18.  Magnetic flux density modes and adjacent maximum peak differences for cracks of different orientations

    图  20  不同走向裂纹的磁通密度z分量与相邻最大谷峰差

    Figure  20.  The z-component of magnetic flux density and adjacent maximum valley difference for cracks of different orientations

    图  19  不同走向裂纹的磁通密度x分量及其相邻最大谷峰差

    Figure  19.  The x-component of magnetic flux density and adjacent maximum peak difference for cracks of different strike cracks orientations

    表  1  不同宽度裂纹钢板试件尺寸

    Table  1.   Dimensions of crack steel plate specimens at different width

    材料编号长/mm宽/mm高/mm
    Q550钢12022
    22042
    32062
    42082
    下载: 导出CSV

    表  2  不同深度裂纹钢板试件尺寸

    Table  2.   Dimensions of crack steel plate specimens at different depths

    材料编号长/mm宽/mm高/mm
    Q550钢52022
    62024
    72026
    82028
    下载: 导出CSV
  • [1] 王国法. 工作面支护与液压支架技术理论体系[J]. 煤炭学报,2014,39(8):1593-1601. doi: 10.13225/j.cnki.jccs.2014.9021

    WANG Guofa. Theoretical system of working face support and hydraulic support technology[J]. Journal of Coal,2014,39(8):1593-1601. doi: 10.13225/j.cnki.jccs.2014.9021
    [2] 王国法. 综采自动化智能化无人化成套技术与装备发展方向[J]. 煤炭科学技术,2014,42(9):30-34,39.

    WANG Guofa. Development direction of automation intelligent unmanned set technology and equipment for header mining[J]. Coal Science and Technology,2014,42(9):30-34,39.
    [3] 李建民,耿清友,周志坡. 我国煤矿综采技术应用现状与发展[J]. 煤炭科学技术,2012,40(10):55-60.

    LI Jianmin,GENG Qingyou,ZHOU Zhipo. Current situation and development of coal mine comprehensive mining technology application in China[J]. Coal Science and Technology,2012,40(10):55-60.
    [4] 洪岸柳. 液压支架的结构强度与疲劳寿命分析[D]. 沈阳: 东北大学, 2012.

    HONG Anliu. Structural strength and fatigue life analysis of hydraulic support[D]. Shenyang: Northeastern University, 2012.
    [5] MENG Zhaosheng,ZENG Qingliang,GAO Kuidong,et al. Failure analysis of super-large mining height powered support[J]. Engineering Failure Analysis,2018,92:378-391. doi: 10.1016/j.engfailanal.2018.04.011
    [6] 李世科. 基于LM−BP神经网络的液压支架顶梁疲劳寿命预测及应用[J]. 中国矿业,2019,28(5):92-96. doi: 10.12075/j.issn.1004-4051.2019.05.026

    LI Shike. Fatigue life prediction of hydraulic support roof beam based on LM-BP neural network and its application[J]. China Mining,2019,28(5):92-96. doi: 10.12075/j.issn.1004-4051.2019.05.026
    [7] 徐鹏博. 两柱掩护式液压支架虚拟疲劳寿命分析研究[J]. 煤矿机械,2019,40(3):34-36.

    XU Pengbo. Study on analysis of virtual fatigue life of two-pillar mask hydraulic support[J]. Coal Mining Machinery,2019,40(3):34-36.
    [8] 殷帅峰,何富连. 综放支架超声相控阵无损探伤原理与检测技术[J]. 采矿与安全工程学报,2012,29(3):328-333.

    YIN Shuaifeng,HE Fulian. Nondestructive testing principle and technology of hydraulic supports by ultrasonic phased array in top coal caving face[J]. Journal of Mining & Safety Engineering,2012,29(3):328-333.
    [9] 陈渊. 煤矿液压支架缸体环焊缝缺陷超声检测与评价研究[D]. 西安: 西安科技大学, 2010.

    CHEN Yuan. Study on ultrasonic testing and evaluation of girth weld flaws for cylinders of hydraulic support used in coal mine[D]. Xi'an: Xi'an University of Science and Technology, 2010.
    [10] 赵枰. 相控延时超声无损检测技术应用实践[J]. 机械管理开发,2019,34(1):110-111. doi: 10.16525/j.cnki.cn14-1134/th.2019.01.046

    ZHAO Ping. Application of phase-controlled delay ultrasonic nondestructive testing technology[J]. Machinery Management and Development,2019,34(1):110-111. doi: 10.16525/j.cnki.cn14-1134/th.2019.01.046
    [11] 刘鸿玉. 浅谈液压支架结构件焊缝渗透显影检测技术的应用[J]. 能源与节能,2021(6):206-207. doi: 10.3969/j.issn.2095-0802.2021.06.090

    LIU Hongyu. Discussion on application of penetration development detection technology for welding lines of hydraulic support structural parts[J]. Energy and Energy Conservation,2021(6):206-207. doi: 10.3969/j.issn.2095-0802.2021.06.090
    [12] 贺敏. 基于交流电磁场和涡流激励热成像的复合检测技术研究[D]. 北京: 中国石油大学(北京), 2017.

    HE Min. Research on a combined testing technique based on ACFM and eddy current thermography[D]. Beijing: China University of Petroleum (Beijing), 2017.
    [13] DUBOV A A. A study of metal properties using the method of magnetic memory[J]. Metal science and heat treatment,1997,39(9):401-405. doi: 10.1007/BF02469065
    [14] 熊乐超,姜禹桐,孙鹏宇,等. 航空发动机涡轮叶片缺陷弱磁检测方法研究[J]. 失效分析与预防,2021,16(3):161-165. doi: 10.3969/j.issn.1673-6214.2021.03.002

    XIONG Lechao,JIANG Yutong,SUN Pengyu,et al. Weak magnetic methods on detecting defects in aviation engine turbine blade[J]. Failure Analysis and Prevention,2021,16(3):161-165. doi: 10.3969/j.issn.1673-6214.2021.03.002
    [15] 彭贤虎,于润桥,郭萌梦. 基于弱磁技术的飞机导管裂纹缺陷检测[J]. 南昌航空大学学报(自然科学版),2020,34(4):44-50.

    PENG Xianhu,YU Runqiao,GUO Mengmeng. Aircraft tube crack defect detection based on weak-magnetic technology[J]. Journal of Nanchang Hangkong University (Natural Science),2020,34(4):44-50.
    [16] 胡博,于润桥,徐伟津. 人工槽模拟GH4169涡轮盘表面裂纹缺陷的微磁检测[J]. 航空学报,2015,36(10):3450-3456.

    HU Bo,YU Runqiao,XU Weijin. Micro-magnetic NDT for surface crack defect in a GH4169 turbine disc simulated by artificial groove[J]. Acta Aeronautica et Astronautica Sinica,2015,36(10):3450-3456.
    [17] 肖坤宇,徐彤,苏成明,等. 液压支架关键部件失效分析与寿命评估研究进展[J]. 中国表面工程,2022,35(1):97-106.

    XIAO Kunyu,XU Tong,SU Chengming,et al. Research progress on failure analysis and life assessment of key components of hydraulic supports[J]. China Surface Engineering,2022,35(1):97-106.
    [18] 张伟. 煤矿用液压支架常见失效形式及其对策分析[J]. 煤矿开采,2017,22(6):22-25.

    ZHANG Wei. Analysis of failure mode and counter measure of hydraulic support in coal mine[J]. Coal Mining Technology,2017,22(6):22-25.
    [19] 李博. 液压支架动载特性及疲劳寿命分析[D]. 太原: 太原理工大学, 2013.

    LI Bo. The analysis of dynamic load property and fatigue lifetime of hydraulic support[D]. Taiyuan: Taiyuan University of Technology, 2013.
    [20] 全国各地区地磁场强度表[DB/OL]. [2022-07-21]. https://eduai.baidu.com/view/c2dbc2c10166f5335a8102d276a20029bd6463a0.

    Table of geomagnetic field strength in various regions of China [DB/OL]. [2022-07-21]. https://eduai.baidu.com/view/c2dbc2c10166f5335a8102d276a20029bd6463a0.
    [21] 我国各地的磁偏角[DB/OL]. [2022-07-21]. https://eduai.baidu.com/view/7dabde0367ec102de3bd892b.

    Magnetic declination angles in various parts of China [DB/OL]. [2022-07-21]. https://eduai.baidu.com/view/7dabde0367ec102de3bd892b.
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  24
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-30
  • 修回日期:  2022-08-30
  • 网络出版日期:  2022-08-30

目录

    /

    返回文章
    返回