Development and exploration of intelligent dense medium separation technology for coal
-
摘要: 重介分选作为应用最广泛的选煤工艺,正在从自动化、信息化向智能化方向迈进。目前重介选煤厂智能化建设只是实现局部智能化,在整体智能化建设上还存在欠缺,在核心生产设备(重介质旋流器、浅槽等)智能化上发展不足。针对上述问题,从智能感知、智能控制与智能优化决策3个方面阐述了重介分选智能化研究现状,并剖析了重介分选在从自动化向智能化发展的过程中面临着诸多挑战性难题,包括原煤品质波动导致工况难以稳定运行、重介分选自身具有极高的复杂性、重介选煤厂智能化建设局限性等。为推进重介分选行业的智能化与绿色化,实现全场设备自主控制,减少运营人员甚至实现无人化,指出重介选煤厂应建设一套“智能感知、智能控制、智能优化决策”一体化的智能优化生产系统:智能感知作为智能化的基础实现选煤工艺数据的感知获取;智能控制获取传感器等数据对选煤工艺进行智能修正,确保对设定值的跟踪;智能优化决策分析智能控制模块中分选过程的运行状态、调整工艺指标设定值,实现工艺指标设定值的动态优化。感知、控制与决策相互协同,促进选煤厂智能化水平与生产效益提高,为未来实现重介分选生产全流程智能协同优化控制提供了一条新思路。Abstract: Dense medium separation, the most widely used coal preparation process, is moving from automation and informatization to intelligence. At present, the intelligent construction of dense medium coal preparation plant only realizes partial intelligent construction. It is deficient in the whole intelligent construction. The intelligent development of the core production equipment (dense medium cyclone and shallow groove) is insufficient. In order to solve the above problems, the research status of intelligent dense medium separation is described from three aspects of intelligent perception, intelligent control and intelligent optimization decision. The challenges faced by dense medium separation in the process of developing from automation to intelligence are analyzed. The challenges include the unstable operation caused by the fluctuation of raw coal quality, the high complexity of dense medium separation, and the limitations of intelligent construction of dense medium coal preparation plant. In order to promote the intelligence and greening of the dense medium separation industry, realize the autonomous control of the whole equipment, reduce the number of operators and even realize unmanned, a system is proposed. It is pointed out that the dense medium coal preparation plant should build a set of intelligent optimization production system with the integration of "intelligent perception, intelligent control and intelligent optimization decision". Intelligent perception, the basis of intelligence, is used to realize the perceptual acquisition of coal preparation process data. Intelligent optimization decision analyzes the operation state of the preparation process in the intelligent control module and adjusts the set value of the process index. Intelligent optimization decision analysis intelligent control module is used to sort process operating state, adjust the process indicators set value, so as to achieve dynamic optimization of the process indicators set value. The mutual coordination of perception, control and decision promotes the improvement of the intelligence level and production efficiency of the coal preparation plant. The coordination provides a new idea for realizing intelligent collaborative optimization control of the whole dense medium separation production process in the future.
-
【编者按】随着国家“碳达峰”和“碳中和”目标任务和工业 4.0 浪潮的不断推进,对选煤厂安全管理、生产能力、产品质量、效率、成本提出了更高的要求,智能化选煤成为选煤行业发展的必然趋势。当下,我国选煤行业智能化建设取得了一系列研究成果,但总的来说智能选煤技术在选煤厂尚未普及,在关键技术、工程应用方面需要进一步产学研结合共同攻关。为总结交流科研成果,探讨技术难题与技术发展方向,推动选煤领域智能化技术发展与应用,进而实现智慧选煤目标,《工矿自动化》编辑部特邀中国矿业大学代伟教授担任客座主编,董良教授、马小平教授担任客座副主编,于2022年第11期组织出版“煤炭智能分选技术与应用”专题。在专题刊出之际,衷心感谢各位专家学者的大力支持!
-
[1] 石焕,程宏志,刘万超. 我国选煤技术现状及发展趋势[J]. 煤炭科学技术,2016,44(6):169-174. DOI: 10.13199/j.cnki.cst.2016.06.028 SHI Huan,CHENG Hongzhi,LIU Wanchao. Present status and development trend of China's coal preparation technology[J]. Coal Science and Technology,2016,44(6):169-174. DOI: 10.13199/j.cnki.cst.2016.06.028
[2] 王然风,高建川,付翔. 智能化选煤厂架构及关键技术[J]. 工矿自动化,2019,45(7):28-32. DOI: 10.13272/j.issn.1671-251x.17465 WANG Ranfeng,GAO Jianchuan,FU Xiang. Framework and key technologies of intelligent coal preparation plant[J]. Industry and Mine Automation,2019,45(7):28-32. DOI: 10.13272/j.issn.1671-251x.17465
[3] 匡亚莉. 智能化选煤厂建设的内涵与框架[J]. 选煤技术,2018(1):85-91. DOI: 10.16447/j.cnki.cpt.2018.01.022 KUANG Yali. The intension and framework for the construction of intelligent coal preparation plant[J]. Coal Preparation Technology,2018(1):85-91. DOI: 10.16447/j.cnki.cpt.2018.01.022
[4] 张月飞,王伟,代伟. 重介分选过程产品指标在线预测方法研究[J]. 煤炭工程,2021,53(增刊1):108-111. ZHANG Yuefei,WANG Wei,DAI Wei. On-line prediction of product indicators in dense medium coal separation[J]. Coal Engineering,2021,53(S1):108-111.
[5] 张凌智,代伟,马小平. 重介质选煤过程先进控制:研究进展及展望[J]. 工矿自动化,2020,46(8):21-27,69. DOI: 10.13272/j.issn.1671-251x.2020020001 ZHANG Lingzhi,DAI Wei,MA Xiaoping. Advanced control of dense medium coal separation process:research progresses and prospects[J]. Industry and Mine Automation,2020,46(8):21-27,69. DOI: 10.13272/j.issn.1671-251x.2020020001
[6] 曹现刚,李莹,王鹏,等. 煤矸石识别方法研究现状与展望[J]. 工矿自动化,2020,46(1):38-43. DOI: 10.13272/j.issn.1671-251x.2019060005 CAO Xiangang,LI Ying,WANG Peng,et al. Research status of coal-gangue identification method and its prospect[J]. Industry and Mine Automation,2020,46(1):38-43. DOI: 10.13272/j.issn.1671-251x.2019060005
[7] 董永胜,陈为高,侯佃平,等. 智能化选煤厂研究与建议[J]. 工矿自动化,2021,47(增刊1):26-31. DONG Yongsheng,CHEN Weigao,HOU Dianping,et al. Research and suggestions on intelligent coal preparation plant[J]. Industry and Mine Automation,2021,47(S1):26-31.
[8] RAO B V,KAPUR P C,KONNUR R. Modeling the size-density partition surface of dense-medium separators[J]. International Journal of Mineral Processing,2003,72(1/2/3/4):443-453. DOI: 10.1016/S0301-7516(03)00118-2
[9] WANG B,CHU K W,YU A B,et al. Modeling the multiphase flow in a dense medium cyclone[J]. Industrial & Engineering Chemistry Research,2009,48(7):3628-3639.
[10] NARASIMHA M,BRENNAN M S,HOLTHAM P N. A review of flow modeling for dense medium cyclones[J]. Coal Preparation,2006,26(2):55-89. DOI: 10.1080/07349340600619733
[11] MEYER E J,CRAIG I K. The development of dynamic models for a dense medium separation circuit in coal beneficiation[J]. Minerals Engineering,2010,23(10):791-805. DOI: 10.1016/j.mineng.2010.05.020
[12] ZHANG Lijun,XIA Xiaohua,ZHU Bing. A dual-loop control system for dense medium coal washing processes with sampled and delayed measurements[J]. IEEE Transactions on Control Systems Technology,2017,25(6):2211-2218. DOI: 10.1109/TCST.2016.2640946
[13] 陈龙,刘全利,王霖青,等. 基于数据的流程工业生产过程指标预测方法综述[J]. 自动化学报,2017,43(6):944-954. DOI: 10.16383/j.aas.2017.c170136 CHEN Long,LIU Quanli,WANG Linqing,et al. Data-driven prediction on performance indicators in process industry:a survey[J]. Acta Automatica Sinica,2017,43(6):944-954. DOI: 10.16383/j.aas.2017.c170136
[14] 李文正,孙伟,郑车晓,等. 应用模糊神经网络对重介质密度进行估算[J]. 矿山机械,2011,39(9):96-99. DOI: 10.16816/j.cnki.ksjx.2011.09.027 LI Wenzheng,SUN Wei,ZHENG Chexiao,et al. Estimation on dense-medium density with fuzzy neural network[J]. Mining & Processing Equipment,2011,39(9):96-99. DOI: 10.16816/j.cnki.ksjx.2011.09.027
[15] 李停. 基于无模型自适应的重介悬浮液密度控制[D]. 徐州: 中国矿业大学, 2016. LI Ting. Density control of dense medium suspension based on the model-free adaptive control[D]. Xuzhou: China University of Mining and Technology, 2016.
[16] DAI Wei,LI Depeng,ZHOU Ping,et al. Stochastic configuration networks with block increments for data modeling in process industries[J]. Information Sciences,2019,484:367-386. DOI: 10.1016/j.ins.2019.01.062
[17] DAI Wei,HU Jincheng,CHENG Yuhu,et al. RVFLN-based online adaptive semi-supervised learning algorithm with application to product quality estimation of industrial processes[J]. Journal of Central South University,2019,26(12):3338-3350. DOI: 10.1007/s11771-019-4257-6
[18] 柴天佑. 复杂工业过程运行优化与反馈控制[J]. 自动化学报,2013,39(11):1744-1757. DOI: 10.3724/SP.J.1004.2013.01744 CHAI Tianyou. Operational optimization and feedback control for complex industrial processe[J]. Acta Automatica Sinica,2013,39(11):1744-1757. DOI: 10.3724/SP.J.1004.2013.01744
[19] 赵春祥,叶桂森. 重介质选煤过程控制模型及控制算法的研究[J]. 煤炭学报,2000,25(增刊1):196-200. DOI: 10.13225/j.cnki.jccs.2000.s1.045 ZHAO Chunxiang,YE Guisen. Study of heavy medium coal preparation process control model and control algorithmn[J]. Journal of China Coal Society,2000,25(S1):196-200. DOI: 10.13225/j.cnki.jccs.2000.s1.045
[20] 邱佳楷,王然风,付翔. 重介质悬浮液密度宽域智能控制系统设计[J]. 工矿自动化,2019,45(7):33-37. DOI: 10.13272/j.issn.1671-251x.17429 QIU Jiakai,WANG Ranfeng,FU Xiang. Design of intelligent control system for dense medium suspension density with wide domain[J]. Industry and Mine Automation,2019,45(7):33-37. DOI: 10.13272/j.issn.1671-251x.17429
[21] 曹珍贯. 重介分选煤过程中重介质的密度预测控制研究[D]. 徐州: 中国矿业大学, 2014. CAO Zhenguan. Study of prediction control on heavy medium density in the process of coal preparation[D]. Xuzhou: China University of Mining and Technology, 2014.
[22] ZHANG Lijun,XIA Xiaohua. A model predictive control for coal beneficiation dense medium cyclones[J]. IFAC Proceedings Volumes,2014,47(3):9810-9815. DOI: 10.3182/20140824-6-ZA-1003.02218
[23] 代伟,张凌智,褚菲,等. 重介质选煤过程模型与数据混合驱动的自适应运行反馈控制[J]. 控制理论与应用,2020,37(2):283-294. DOI: 10.7641/CTA.2019.80852 DAI Wei,ZHANG Lingzhi,CHU Fei,et a1. Model-data hybrid driven adaptive operational feedback control of dense medium coal preparation process[J]. Control Theory & Applications,2020,37(2):283-294. DOI: 10.7641/CTA.2019.80852
[24] 张凌智, 代伟, 陆文捷, 等. 非线性工业过程多速率分层运行优化控制及选煤过程应用研究[C]. 第30届中国过程控制会议, 昆明, 2019: 287. ZHANG Lingzhi, DAI Wei, LU Wenjie, et al. Multi-rate layered optimal operational control of nonlinear industrial processes[C]. Proceedings of the 30th Chinese Process Control Conference, Kunming, 2019: 287.
[25] SUN Xiaolu,CAO Zhenguan,YUE Yuanhe,et al. Online prediction of dense medium suspension density based on phase space reconstruction[J]. Particulate Science and Technology,2018,36(8):989-998. DOI: 10.1080/02726351.2017.1333180
[26] 袁鹏涛. 可变煤质的重介分选过程悬浮液密度设定智能决策与控制研究[D]. 太原: 太原理工大学, 2020. YUAN Pengtao. Study on intelligent decision and control of susupension density setting in heavy medium separation process with variable coal quality[D]. Taiyuan: Taiyuan University of Technology, 2020.
[27] 胡金良,李彤昀,王光辉. 基于强化学习的重介质选煤过程优化控制[J]. 煤炭工程,2022,54(1):137-141. HU Jinliang,LI Tongyun,WANG Guanghui. Optimal control of dense medium coal preparation process based on reinforcement learning[J]. Coal Engineering,2022,54(1):137-141.
[28] 陶志达. 选煤厂智能化建设现状调查与分析[J]. 煤炭加工与综合利用,2022(1):66-70. DOI: 10.16200/j.cnki.11-2627/td.2022.01.013 TAO Zhida. Investigation and analysis on the current situation of intelligent construction in coal preparation plant[J]. Coal Processing & Comprehensive Utilization,2022(1):66-70. DOI: 10.16200/j.cnki.11-2627/td.2022.01.013
[29] 桂卫华,岳伟超,谢永芳,等. 铝电解生产智能优化制造研究综述[J]. 自动化学报,2018,44(11):1957-1970. DOI: 10.16383/j.aas.2018.c180198 GUI Weihua,YUE Weichao,XIE Yongfang,et al. A review of intelligent optimal manufacturing for aluminum reduction production[J]. Acta Automatica Sinica,2018,44(11):1957-1970. DOI: 10.16383/j.aas.2018.c180198
-
期刊类型引用(11)
1. 宋柱. 智能感知与决策在智能化采煤系统中的关键技术探讨. 内蒙古煤炭经济. 2025(02): 17-19 . 百度学术
2. 刘新辉,袁雪,吕鹏辉,雷伟刚,薛振磊,卜祥宁,沙杰. 选煤厂重介质分选工艺智能化改造及应用. 煤炭加工与综合利用. 2024(03): 10-13+17 . 百度学术
3. 朱磊,刘成勇,刘治成,古文哲,潘浩,宋天奇. 关中矿区煤矸井下分选及短壁充填设计与实践. 煤炭技术. 2024(04): 73-78 . 百度学术
4. 张肇龙,李冬,张治军,高建川,王然风. 山西焦煤集团选煤厂智能化建设的实践与思考. 中国煤炭. 2024(06): 98-104 . 百度学术
5. 陈修奇,白永清,姜思远,张忠,盖春杰,王传真. 龙王沟选煤厂智能化控制实践与分析. 洁净煤技术. 2024(S1): 553-559 . 百度学术
6. 刘军. 基于卷积神经网络前馈补偿的选煤厂燃煤炉重介质分选智能控制技术. 洁净煤技术. 2024(S1): 577-582 . 百度学术
7. 何明江,钟韦. 煤矿洗煤中智能重介软件系统的应用与优化. 内蒙古煤炭经济. 2024(19): 109-111 . 百度学术
8. 罗金洋,李勇,倪恒球,毕争,周宏强. 潘集选煤厂智能化建设促进“工位”替代“岗位”管理模式创新实践. 煤炭加工与综合利用. 2024(12): 73-79+83 . 百度学术
9. 王美君,谭章禄,吕晗冰,桂谕典. 选煤厂智能化建设技术架构与技术策略研究. 矿业科学学报. 2024(06): 1017-1026 . 百度学术
10. 朱玉阁,黄飞云,张许峰,杨博. 选煤厂重介浅槽分选系统的智能化改造与实践. 内蒙古煤炭经济. 2023(14): 113-116 . 百度学术
11. 姜文磊. 基于粒子群算法的煤炭重介洗选智能控制系统. 自动化与仪器仪表. 2023(09): 161-164 . 百度学术
其他类型引用(2)