留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进MobileNetV2的钻杆计数方法

张栋 姜媛媛

张栋,姜媛媛. 基于改进MobileNetV2的钻杆计数方法[J]. 工矿自动化,2022,48(10):69-75.  doi: 10.13272/j.issn.1671-251x.2022060019
引用本文: 张栋,姜媛媛. 基于改进MobileNetV2的钻杆计数方法[J]. 工矿自动化,2022,48(10):69-75.  doi: 10.13272/j.issn.1671-251x.2022060019
ZHANG Dong, JIANG Yuanyuan. Drill pipe counting method based on improved MobileNetV2[J]. Journal of Mine Automation,2022,48(10):69-75.  doi: 10.13272/j.issn.1671-251x.2022060019
Citation: ZHANG Dong, JIANG Yuanyuan. Drill pipe counting method based on improved MobileNetV2[J]. Journal of Mine Automation,2022,48(10):69-75.  doi: 10.13272/j.issn.1671-251x.2022060019

基于改进MobileNetV2的钻杆计数方法

doi: 10.13272/j.issn.1671-251x.2022060019
基金项目: 安徽省重点研究与开发计划项目(202104g01020012);安徽理工大学环境友好材料与职业健康研究院研发专项基金项目(ALW2020YF18)。
详细信息
    作者简介:

    张栋(1997—),男,安徽淮南人,硕士研究生,主要研究方向为计算机视觉图像处理,E-mail:1023857721@qq.com

    通讯作者:

    姜媛媛(1982—),女,安徽颍上人,教授,博士,主要研究方向为人工智能机器学习,E-mail:jyyll672@163.com

  • 中图分类号: TD67

Drill pipe counting method based on improved MobileNetV2

  • 摘要: 针对现有基于人工及仪器的钻杆计数法存在精度较低、耗时耗力,现有基于图像处理的钻杆计数方法难以提取图像特征,网络模型复杂度高、计算量大等问题,提出了一种基于改进MobileNetV2的钻杆计数方法。通过摄像头采集钻机工作状态图像,采用数据增强对采集的图像进行预处理,在MobileNetV2的基础上,添加卷积注意力模块增强特征的细化能力,优化目标函数提升识别精度,通过迁移学习获取初始参数。将改进后的MobileNetV2作为钻机工作状态识别模型,提取钻机工作状态特征,通过识别钻杆钻进完整过程中装钻杆、打钻杆、卸钻杆、停机4种钻机工作状态生成置信度数据,通过滑动窗口对置信度数据进行滤波,统计钻杆数量,明确钻孔深度。实验结果表明:改进后的MobileNetV2模型识别准确率达99.95%,与经典分类模型ResNet50,Xception,InceptionV3,InceptionResNetV2,MobileNetV2相比,准确率分别提升了1.35%,1.28%,1.43%,0.85%,1.25%,参数量比MobileNetV2模型减少了38.9%,模型收敛速度更快,综合性能更好。将基于改进MobileNetV2的钻杆计数方法应用于煤矿综采工作面的钻杆计数中,平均钻杆计数精度为98.4%,实现了钻杆精确计数,验证了该方法在复杂环境下应用的可行性和实用性。

     

  • 图  1  CBAM结构

    Figure  1.  Structure of convolutional block attention module

    图  2  迁移学习框架

    Figure  2.  Transfer learning framework

    图  3  基于P−MobileNetV2模型的钻杆计数流程

    Figure  3.  Drill pipe counting process based on P-MobileNetV2 model

    图  4  钻机工作状态图像

    Figure  4.  Images of drilling rig working state

    图  5  图像增强示例

    Figure  5.  Image enhancement example

    图  6  置信度滤波过程

    Figure  6.  The process of confidence filtering

    图  7  不同模型的训练曲线

    Figure  7.  Training curves of different models

    表  1  P−MobileNetV2模型结构

    Table  1.   Improved MobileNetV2 model structure

    输入大小步长卷积核重复次数
    224×224×3CBAM1
    224×224×32Conv 3×31
    112×112×321Bottleneck1
    112×112×162Bottleneck2
    56×56×242Bottleneck3
    28×28×321Bottleneck4
    28×28×642Bottleneck3
    14×14×962Bottleneck3
    7×7×1601Bottleneck1
    7×7×3201Conv 1×11
    7×7×320CBAM1
    7×7×1280AvgPool7×71
    7×7×12801Conv 1×1×41
    下载: 导出CSV

    表  2  不同模型的训练结果

    Table  2.   Training results of different models

    模型参数量/byte训练时间/s准确率/%
    InceptionResNetV254 342 8845 39399.10
    ResNet5023 595 9083 02798.60
    InceptionV321 810 9802 33398.52
    Xception20 869 6763 92298.67
    MobileNetV22 281 34896698.70
    P−MobileNetV21 392 7221 09699.95
    下载: 导出CSV

    表  3  不同钻杆计数方法的统计结果

    Table  3.   Statistical results of different drill pipe counting methods

    方法实际钻杆
    数量
    检测钻杆
    数量
    准确率/%
    人工计数50048296.4
    文献[9]50048597.0
    文献[10]50048496.8
    文献[19]50048897.6
    P−MobileNetV250049298.4
    下载: 导出CSV
  • [1] 郑仰峰,翟成,辛海会,等. 煤巷掘进工作面强弱耦合能量控制防治煤与瓦斯突出理论与方法[J]. 采矿与安全工程学报,2021,38(6):1269-1280.

    ZHENG Yangfeng,ZHAI Cheng,XIN Haihui,et al. Theories and methods of coal and gas outburst prevention by strong-weak coupling energy control in coal roadway driving face[J]. Journal of Mining & Safety Engineering,2021,38(6):1269-1280.
    [2] 孙志飞,吴银成,胡云. 钻杆长度测量方法[J]. 工矿自动化,2015,41(3):51-53.

    SUN Zhifei,WU Yincheng,HU Yun. Length measurement methods of drill pipe[J]. Industry and Mine Automation,2015,41(3):51-53.
    [3] 胡少兵,罗明璋,程峰,等. 基于应力波频谱图的护栏金属立柱埋深检测法[J]. 公路,2022,67(6):336-341.

    HU Shaobing,LUO Mingzhang,CHENG Feng,et al. Method of detecting the buried depth of guardrail metal column based on stress wave spectrum image[J]. Highway,2022,67(6):336-341.
    [4] 徐钊,房咪咪,周红伟,等. 基于电驻波的锚杆长度无损测量方法[J]. 工矿自动化,2013,39(9):112-115.

    XU Zhao,FANG Mimi,ZHOU Hongwei,et al. Non-destructive measurement method of anchor stock length based on electricity standing wave[J]. Industry and Mine Automation,2013,39(9):112-115.
    [5] 李宏达,黄鼎琨,张彬,等. 改进的低压脉冲法对变压器绕组变形的探测研究[J]. 南京理工大学学报,2020,44(1):15-20.

    LI Hongda,HUANG Dingkun,ZHANG Bin,et al. Research in detection of winding transformer variation based on improved LVI method[J]. Journal of Nanjing University of Science and Technology,2020,44(1):15-20.
    [6] 徐志强,吕子奇,王卫东,等. 煤矸智能分选的机器视觉识别方法与优化[J]. 煤炭学报,2020,45(6):2207-2216.

    XU Zhiqiang,LYU Ziqi,WANG Weidong,et al. Machine vision recognition method and optimization for intelligent separation of coal and gangue[J]. Journal of China Coal Society,2020,45(6):2207-2216.
    [7] 董立红,彭业勋,符立梅. 基于Sobel边缘检测的圆周Harris角点检测算法[J]. 西安科技大学学报,2019,39(2):374-380.

    DONG Lihong,PENG Yexun,FU Limei. Circular Harris corner detection algorithm based on Sobel edge detection[J]. Journal of Xi'an University of Science and Technology,2019,39(2):374-380.
    [8] 董立红,王杰,厍向阳. 基于改进Camshift算法的钻杆计数方法[J]. 工矿自动化,2015,41(1):71-76. doi: 10.13272/j.issn.1671-251x.2015.01.018

    DONG Lihong,WANG Jie,SHE Xiangyang. Drill counting method based on improved Camshift algorithm[J]. Industry and Mine Automation,2015,41(1):71-76. doi: 10.13272/j.issn.1671-251x.2015.01.018
    [9] 高瑞,郝乐,刘宝,等. 基于改进ResNet网络的井下钻杆计数方法[J]. 工矿自动化,2020,46(10):32-37.

    GAO Rui,HAO Le,LIU Bao,et al. Research on underground drill pipe counting method based on improved ResNet network[J]. Industry and Mine Automation,2020,46(10):32-37.
    [10] 党伟超,姚远,白尚旺,等. 煤矿探水卸杆动作识别研究[J]. 工矿自动化,2020,46(7):107-112.

    DANG Weichao,YAO Yuan,BAI Shangwang,et al. Research on unloading drill-rod action identification in coal mine water exploration[J]. Industry and Mine Automation,2020,46(7):107-112.
    [11] SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks[EB/OL]. [2022-05-16]. http://arxiv.org/pdf/1801.04381.pdf.
    [12] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]. European Conference on Computer Vision, Munich, 2018: 3-19.
    [13] 朱劲松,李欢,王世芳. 基于卷积神经网络和迁移学习的钢桥病害识别[J]. 长安大学学报(自然科学版),2021,41(3):52-63.

    ZHU Jinsong,LI Huan,WANG Shifang. Defect recognition for steel bridge based on convolutional neural network and transfer learning[J]. Journal of Chang'an University(Natural Science Edition),2021,41(3):52-63.
    [14] LIN T Y,GOYAL P,GIRSHICK R,et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(2):318-327.
    [15] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016: 770-778.
    [16] CHOLLET F. Xception: deep learning with depthwise separable convolutions [C]. IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, 2017: 1251-1258.
    [17] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016: 2818-2826.
    [18] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4: Inception-ResNet and the impact of residual connections on learning [C]. The 31st AAAI Conference on Artificial Intelligence, Palo Alto, 2017: 4278-4284.
    [19] 方杰,李振璧,夏亮. 基于ECO−HC的钻杆计数方法[J]. 煤炭技术,2021,40(11):186-189.

    FANG Jie,LI Zhenbi,XIA Liang. Drill pipe counting method based on ECO-HC[J]. Coal Technology,2021,40(11):186-189.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  249
  • HTML全文浏览量:  55
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-07
  • 修回日期:  2022-10-07
  • 网络出版日期:  2022-09-19

目录

    /

    返回文章
    返回