留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液压支架精准推移与快速跟机技术研究现状及发展趋势

任怀伟 张帅 张德生 周杰 任长忠 苗兴 刘科 侯炜

任怀伟,张帅,张德生,等. 液压支架精准推移与快速跟机技术研究现状及发展趋势[J]. 工矿自动化,2022,48(8):1-9, 15.  doi: 10.13272/j.issn.1671-251x.2022060016
引用本文: 任怀伟,张帅,张德生,等. 液压支架精准推移与快速跟机技术研究现状及发展趋势[J]. 工矿自动化,2022,48(8):1-9, 15.  doi: 10.13272/j.issn.1671-251x.2022060016
REN Huaiwei, ZHANG Shuai, ZHANG Desheng, et al. Research status and development trend of hydraulic support precision pushing and fast follow-up technology[J]. Journal of Mine Automation,2022,48(8):1-9, 15.  doi: 10.13272/j.issn.1671-251x.2022060016
Citation: REN Huaiwei, ZHANG Shuai, ZHANG Desheng, et al. Research status and development trend of hydraulic support precision pushing and fast follow-up technology[J]. Journal of Mine Automation,2022,48(8):1-9, 15.  doi: 10.13272/j.issn.1671-251x.2022060016

液压支架精准推移与快速跟机技术研究现状及发展趋势

doi: 10.13272/j.issn.1671-251x.2022060016
基金项目: 国家自然科学基金面上项目(51874174);山东省重点研发计划(重大科技创新工程)项目(2020CXGC011502);中国煤炭科工集团科技专项重点项目(2020-TD-ZD001)
详细信息
    作者简介:

    任怀伟(1980-),男,河北廊坊人,研究员,博士,现主要从事煤机装备创新研发、工作面自动化及智能化技术研究工作,E-mail:rhuaiwei@tdkcsj.com

  • 中图分类号: TD355

Research status and development trend of hydraulic support precision pushing and fast follow-up technology

  • 摘要: 液压支架精准推移与快速跟机是实现工作面智能化开采的关键技术支撑。为实现智能化开采,将液压支架精准推移等效为煤矿环境下的阀控缸系统精准位置控制;快速跟机则需从跟机工艺、稳压供液、快速移架等方面实现。针对液压支架精准推移技术,指出可借鉴相关领域成熟的阀控缸精准位置控制技术,总结了电液比例阀、高速开关阀、电磁换向阀控缸位置控制技术的研究成果及借鉴到煤矿领域存在的问题,提出可通过研制适合井下环境的大流量高压水基电液比例阀、开发智能优化控制算法2种途径实现液压支架精准推移。针对液压支架快速跟机技术,指出目前液压支架自动跟机因跟机工艺不合理、供液系统不稳定、移架工序不合理等,导致跟机速度慢,且易出现推移不到位、丢架等情况,从优化跟机工艺、稳压供液、快速移架3个方面总结了提高跟机速度相关研究成果,指出:目前跟机工艺无法根据采煤机速度动态调整,基于设备感知的自动跟机尚处于理论阶段;优化供液系统结构和控制算法是目前实现工作面稳压供液的主要途径,但未能有效解决多支架协同动作时液压支架端压力、流量稳定问题;改进液压系统结构是实现快速移架的主流方式,但存在远距离输送高压油液时压降大和高压处爆管、增大管径导致管路布置困难等问题。针对上述问题,提出从工作面供液系统恒压控制、提高液压支架推移控制精度、保障液压支架自动跟机效果、提高工作面整体跟机速度4个层面实现液压支架精准推移与快速跟机。指出液压支架精准推移和快速跟机技术的发展趋势为集中−分布式敏捷高效供液、液压支架控制器边缘计算能力提高、跟机控制策略对采场环境适应性增强、采场−装备动态耦合与跟随控制。

     

  • 图  1  电液比例阀控缸位置控制系统仿真模型

    Figure  1.  Simulation model of hydraulic cylinder position control system based on proportional valve

    图  2  PID+模糊控制系统

    Figure  2.  PID and fuzzy control system

    图  3  CMAC−PID复合控制算法[9]

    Figure  3.  CMAC-PID compound control algorithm[9]

    图  4  数字液压缸控制系统

    Figure  4.  Digital cylinder control system

    图  5  双换向阀+节流阻尼的液压缸精准位置控制系统[14]

    1—液压泵;2—溢流阀;3.1, 3.2—电磁换向阀;4.1, 4.2—节流阻尼;5—底座;6—液压缸;x—目标位置;y—实时位置。

    Figure  5.  Precise position control system of hydraulic cylinder based on double directional valve and throttle valve[14]

    图  6  推移控制逻辑阀工作原理[19]

    1—推移油缸;2—阀芯(设有节流孔);3—弹簧;4—进液阀杆;5—电液换向阀(喷雾功能);6—电液换向阀(推移功能);A,B—工作口;C—逻辑控制口。

    Figure  6.  Operating principle of push control logic valve[19]

    图  7  柠条塔煤矿S1202工作面液压支架自动跟机工艺

    Figure  7.  Automatic follow-up process of hydraulic support in S1202 working face of Ningtiaota Coal Mine

    图  8  柠条塔煤矿S1202工作面某日跟机自动化率

    Figure  8.  Automation rate of follow-up in S1202 working face of Ningtiaota Coal Mine on a certain day

    图  9  工作面网络式供液系统

    Figure  9.  Networked liquid supply system in working face

    图  10  模糊免疫PID控制器工作原理

    Figure  10.  Operating principle of fuzzy immune PID controller

  • [1] 王国法,任怀伟,赵国瑞,等. 智能化煤矿数据模型及复杂巨系统耦合技术体系[J]. 煤炭学报,2022,47(1):61-74. doi: 10.13225/j.cnki.jccs.YG21.1860

    WANG Guofa,REN Huaiwei,ZHAO Guorui,et al. Digital model and giant system coupling technology system of smart coal mine[J]. Journal of China Coal Society,2022,47(1):61-74. doi: 10.13225/j.cnki.jccs.YG21.1860
    [2] 任怀伟,巩师鑫,刘新华,等. 煤矿千米深井智能开采关键技术研究与应用[J]. 煤炭科学技术,2021,49(4):149-158.

    REN Huaiwei,GONG Shixin,LIU Xinhua,et al. Research and application on key techniques of intelligent mining for kilo-meter deep coal mine[J]. Coal Science and Technology,2021,49(4):149-158.
    [3] 任怀伟,孟祥军,李政,等. 8 m大采高综采工作面智能控制系统关键技术研究[J]. 煤炭科学技术,2017,45(11):37-44.

    REN Huaiwei,MENG Xiangjun,LI Zheng,et al. Study on key technology of intelligent control system applied in 8 m large mining height fully-mechanized face[J]. Coal Science and Technology,2017,45(11):37-44.
    [4] REN Huaiwei,ZHANG Desheng,GONG Shixin,et al. Dynamic impact experiment and response characteristics analysis for 1∶2 reduced-scale model of hydraulic support[J]. International Journal of Mining Science and Technology,2021,31(3):347-356. doi: 10.1016/j.ijmst.2021.03.004
    [5] 张帅,任怀伟,韩安,等. 复杂条件工作面智能化开采关键技术及发展趋势[J]. 工矿自动化,2022,48(3):16-25. doi: 10.13272/j.issn.1671-251x.2021090041

    ZHANG Shuai,REN Huaiwei,HAN An,et al. Key technology and development trend of intelligent mining in complex condition working face[J]. Journal of Mine Automation,2022,48(3):16-25. doi: 10.13272/j.issn.1671-251x.2021090041
    [6] 李延民,刘锡山,王振,等. 基于AMESim−Simulink的自适应模糊PID电液比例位置控制研究[J]. 机电工程,2020,37(12):1453-1458. doi: 10.3969/j.issn.1001-4551.2020.12.009

    LI Yanmin,LIU Xishan,WANG Zhen,et al. Adaptive fuzzy PID electro-hydraulic proportional position control based on AMESim-Simulink[J]. Journal of Mechanical & Electrical Engineering,2020,37(12):1453-1458. doi: 10.3969/j.issn.1001-4551.2020.12.009
    [7] 陈立娟,彭泽钦,孙家庆,等. 先导式电液比例阀非线性位置自适应补偿控制[J]. 液压与气动,2021,45(8):64-71.

    CHEN Lijuan,PENG Zeqin,SUN Jiaqing,et al. Nonlinear position adaptive compensation control of pilot operated electro-hydraulic proportional valve[J]. Chinese Hydraulics & Pneumatics,2021,45(8):64-71.
    [8] 王立新,赵丁选,刘福才,等. 基于死区补偿的电液位置伺服系统自抗扰控制[J]. 中国机械工程,2021,32(12):1432-1442. doi: 10.3969/j.issn.1004-132X.2021.12.006

    WANG Lixin,ZHAO Dingxuan,LIU Fucai,et al. ADRC for electro-hydraulic position servo systems based on dead-zone compensation[J]. China Mechanical Engineering,2021,32(12):1432-1442. doi: 10.3969/j.issn.1004-132X.2021.12.006
    [9] 刘胜凯. 数字阀控缸位置伺服系统控制特性研究[D]. 秦皇岛: 燕山大学, 2016.

    LIU Shengkai. The research on control characteristics of digital hydraulic valve control cylinder position servo system[D]. Qinhuangdao: Yanshan University, 2016.
    [10] LIU Zhihao,GAO Qinhe,DENG Gangfeng,et al. The position control of hydraulic cylinder based on high-speed on-off valve[J]. International Journal of Modelling, Identification and Control,2014,22(1):54-67.
    [11] LEE J-H,YU Y W,HONG H W,et al. Control of spool position of on/off solenoid operated hydraulic valve by sliding-mode controller[J]. Journal of Mechanical Science and Technology,2015,29(12):5395-5408. doi: 10.1007/s12206-015-1141-7
    [12] 杨雁,王云宽,宋英华. 基于迭代学习的注塑机开合模机构定位控制研究[J]. 中国机械工程,2008(18):2152-2155,2165. doi: 10.3321/j.issn:1004-132X.2008.18.003

    YANG Yan,WANG Yunkuan,SONG Yinghua. Clamping mechanism's position control of IMM based on iterative learning algorithm[J]. China Mechanical Engineering,2008(18):2152-2155,2165. doi: 10.3321/j.issn:1004-132X.2008.18.003
    [13] 任怀伟, 周杰, 张德生, 等. 一种数字油缸及其控制方法: 113153862A[P]. 2021-07-23.

    REN Huaiwei, ZHOU Jie, ZHANG Desheng, et al. A digital oil cylinder and its control method: 113153862A[P]. 2021-07-23.
    [14] 周创辉,文桂林,卿启湘. 采用电磁换向阀实现的电液位置控制系统研究[J]. 武汉大学学报(工学版),2017,50(5):760-765.

    ZHOU Chuanghui,WEN Guilin,QING Qixiang. Study of electro-hydraulic position control system using solenoid directional valve[J]. Engineering Journal of Wuhan University,2017,50(5):760-765.
    [15] 杨韩峰,郭彦青,张宏,等. 基于电磁换向阀的液压缸位置控制系统研究[J]. 机械设计与制造工程,2020,49(2):101-104. doi: 10.3969/j.issn.2095-509X.2020.02.022

    YANG Hanfeng,GUO Yanqing,ZHANG Hong,et al. Development of the hydraulic cylinder position control system based on electromagnetic directional valve[J]. Machine Design and Manufacturing Engineering,2020,49(2):101-104. doi: 10.3969/j.issn.2095-509X.2020.02.022
    [16] 廖瑶瑶, 柴玮锋, 廉自生, 等. 一种水基比例阀及其控制方法: 201811330728.5[P]. 2019-04-02.

    LIAO Yaoyao, CHAI Weifeng, LIAN Zisheng, et al. Water based proportional valve and its control method: 201811330728.5[P]. 2019-04-02.
    [17] 张增猛, 孟繁毅, 侯交义, 等. 音圈电机直驱水液压节流控制阀仿真与试验[J]. 煤炭学报,2017,42(增刊1):275-281.

    ZHANG Zengmeng, MENG Fanyi, HOU Jiaoyi, et al. Design, simulation and experiments of water hydraulic throttle valve with direct voice coil motor actuation[J]. Journal of China Coal Society,2017,42(S1):275-281.
    [18] 李首滨, 李继周, 李艳杰, 等. 一种液压支架移架与推溜的精确控制系统和方法: 105569703A[P]. 2016-05-11.

    LI Shoubin, LI Jizhou, LI Yanjie, et al. A precise control system and method for moving and sliding of hydraulic support: 105569703A[P]. 2016-05-11.
    [19] 王峰. 液压支架精确推移控制方案研究与应用[J]. 工矿自动化,2017,43(5):6-9.

    WANG Feng. Research of precise pushing control scheme for hydraulic support and its application[J]. Industry and Mine Automation,2017,43(5):6-9.
    [20] 高卫勇,张敏娟. 综采工作面液压支架跟机自动化工艺研究[J]. 工矿自动化,2018,44(11):14-17. doi: 10.13272/j.issn.1671-251x.2018050040

    GAO Weiyong,ZHANG Minjuan. Research on following automation technology of hydraulic support on fully-mechanized coal mining face[J]. Industry and Mine Automation,2018,44(11):14-17. doi: 10.13272/j.issn.1671-251x.2018050040
    [21] 雷照源,姚一龙,李磊,等. 大采高智能化工作面液压支架自动跟机控制技术研究[J]. 煤炭科学技术,2019,47(7):194-199. doi: 10.13199/j.cnki.cst.2019.07.025

    LEI Zhaoyuan,YAO Yilong,LI Lei,et al. Research on automatic follow-up control technology of hydraulic support in intelligent working face with large mining height[J]. Coal Science and Technology,2019,47(7):194-199. doi: 10.13199/j.cnki.cst.2019.07.025
    [22] 刘清,韩秀琪,徐兰欣,等. 综采工作面采煤机和液压支架协同控制技术[J]. 工矿自动化,2020,46(5):43-48.

    LIU Qing,HAN Xiuqi,XU Lanxin,et al. Cooperative control technology of shear and hydraulic support on fully-mechanized coal mining face[J]. Industry and Mine Automation,2020,46(5):43-48.
    [23] 李昊,柴保明,翟大磊. 基于液压支架自主跟机逻辑的移架时长参数设定及动态优化[J]. 煤矿安全,2019,50(9):136-139.

    LI Hao,CHAI Baoming,ZHAI Dalei. Setting and dynamic optimization of supports shifting time parameters based on hydraulic support following machine logic autonomously[J]. Safety in Coal Mines,2019,50(9):136-139.
    [24] 王虹,尤秀松,李首滨,等. 基于遗传算法与BP神经网络的支架跟机自动化研究[J]. 煤炭科学技术,2021,49(1):272-277.

    WANG Hong,YOU Xiusong,LI Shoubin,et al. Research on automation of support based on genetic algorithm and BP neural network[J]. Coal Science and Technology,2021,49(1):272-277.
    [25] 牛剑峰, 杨士军, 王峰, 等. 一种煤矿用液压支架自动移架智能控制方法: 201510020535.X[P]. 2015-07-01.

    NIU Jianfeng, YANG Shijun, WANG Feng, et al. An intelligent control method for automatic moving of hydraulic support in coal mine: 201510020535.X[P]. 2015-07-01.
    [26] LIU Chang, LIAN Zisheng. Study and simulation of emulsion pump pressure controller based on fuzzy-immune PID algorithm[C]. International Conference on Computer Science and Information Technology, Chengdu, 2012: 666-669.
    [27] TAN Chao,QI Nan,ZHOU Xin,et al. A pressure control method for emulsion pump station based on Elman neural network[J]. Computational Intelligence and Neuroscience,2015,2015(1):455-461.
    [28] 付翔,王然风,赵阳升. 液压支架群组跟机推进行为的智能决策模型[J]. 煤炭学报,2020,45(6):2065-2077. doi: 10.13225/j.cnki.jccs.zn20.0339

    FU Xiang,WANG Ranfeng,ZHAO Yangsheng. Intelligent decision-making model on the of hydraulic supports group advancing behavior to follow shearer[J]. Journal of China Coal Society,2020,45(6):2065-2077. doi: 10.13225/j.cnki.jccs.zn20.0339
    [29] 黄蕾,刘志奇,马占江,等. 液压支架快速移架过程中工作参数的匹配与优化[J]. 煤矿机械,2016,37(11):107-110. doi: 10.13436/j.mkjx.201611039

    HUANG Lei,LIU Zhiqi,MA Zhanjiang,et al. Working parameters matching and optimization in process of hydraulic support fast moving[J]. Coal Mine Machinery,2016,37(11):107-110. doi: 10.13436/j.mkjx.201611039
    [30] 王巍,武守彦. 基于AMEsim的液压支架快速移架速度分析[J]. 煤矿机械,2012,33(6):113-115. doi: 10.3969/j.issn.1003-0794.2012.06.049

    WANG Wei,WU Shouyan. Analysis of velocity of rapidly moving hydraulic support based on AMEsim[J]. Coal Mine Machinery,2012,33(6):113-115. doi: 10.3969/j.issn.1003-0794.2012.06.049
    [31] 张良, 李首滨. 实用智能化采煤控制技术[M]. 北京: 应急管理出版社, 2022.

    ZHANG Liang, LI Shoubin. Practical intelligent coal mining control technology[M]. Beijing: Emergency Management Press, 2022.
  • 加载中
图(10)
计量
  • 文章访问数:  427
  • HTML全文浏览量:  46
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-07
  • 修回日期:  2022-08-12
  • 网络出版日期:  2022-08-12

目录

    /

    返回文章
    返回