矿井主要通风机切换过程供给风量优化控制研究

蔡佳浩, 王前进, 辅小荣, 马小平

蔡佳浩,王前进,辅小荣,等. 矿井主要通风机切换过程供给风量优化控制研究[J]. 工矿自动化,2023,49(1):140-145, 161. DOI: 10.13272/j.issn.1671-251x.2022050059
引用本文: 蔡佳浩,王前进,辅小荣,等. 矿井主要通风机切换过程供给风量优化控制研究[J]. 工矿自动化,2023,49(1):140-145, 161. DOI: 10.13272/j.issn.1671-251x.2022050059
CAI Jiahao, WANG Qianjin, FU Xiaorong, et al. Study on the optimal control of supply air volume in switchover process of mine main ventilators[J]. Journal of Mine Automation,2023,49(1):140-145, 161. DOI: 10.13272/j.issn.1671-251x.2022050059
Citation: CAI Jiahao, WANG Qianjin, FU Xiaorong, et al. Study on the optimal control of supply air volume in switchover process of mine main ventilators[J]. Journal of Mine Automation,2023,49(1):140-145, 161. DOI: 10.13272/j.issn.1671-251x.2022050059

矿井主要通风机切换过程供给风量优化控制研究

基金项目: 国家自然科学基金项目(62003293);江苏省自然科学基金项目(BK20191043);盐城工学院校级科研项目(xjr2019018)。
详细信息
    作者简介:

    蔡佳浩(1998—),男,江苏南通人,硕士研究生,主要研究方向为控制工程,E-mail:2644551846@qq.com

  • 中图分类号: TD72

Study on the optimal control of supply air volume in switchover process of mine main ventilators

  • 摘要: 矿井主要通风机切换过程中存在供给风量大范围波动甚至中断问题,易导致瓦斯浓度超限。常用的基于模型的主要通风机切换控制方法难以很好地对约束进行处理,基于智能算法的控制方法依赖专家知识和经验,具有主观性和随意性。针对上述问题,以中国平煤能源化工集团有限责任公司二矿主要通风机切换过程为研究背景,研究了主要通风机切换过程供给风量优化控制问题。基于流体动力学方程和图论概念,建立了主要通风机切换过程动态模型,并采用泰勒展开式对其进行线性化处理,以降低计算复杂度。考虑矿井主要通风机切换过程具有强非线性、系统状态受约束,且为离散的多输入多输出系统,采用模型预测控制(MPC)算法研究风量控制问题,设计了主要通风机切换过程MPC系统,将风量优化转换为二次规划问题。采用原对偶神经网络在线求解优化问题,实现主要通风机切换过程的供给风量实时优化控制。试验结果表明:MPC系统可有效实现主要通风机切换,切换过程中4个风门风量可很好地跟踪参考值;各采样时刻运算时间为0.027 s,满足切换过程实时性要求;供给风量波动最大值仅为0.9%,明显优于传统PID控制效果。
    Abstract: The supply air volume fluctuates in a large range or even interrupts during the switching process of mine main ventilators, which is easy to cause the gas concentration to exceed the limit. The commonly used model-based main ventilator switchover control method is difficult to handle the constraints well. The intelligent algorithm relies on expert knowledge and experience, which is subjective and arbitrary. In order to solve the above problems, taking the switchover process of main ventilators in the No.2 Mine of China Pingmei Energy and Chemical Group Co., Ltd. as the research background, the optimal control of supply air volume in the switchover process of main ventilators is studied. Based on the hydrodynamics equation and the concept of graph theory, the dynamic model of the main ventilator switchover process is established. The Taylor expansion is used to linearize it to reduce the computational complexity. The switchover process of mine main ventilator is strongly nonlinear, and the system state is constrained. It is a discrete multi-input and multi-output system. The model predictive control (MPC) algorithm is used to study the air volume control problem. The MPC system of the main ventilator switchover process is designed, which converts the air volume optimization into a quadratic programming problem. The primal-dual neural network is used to solve the optimization problem online to realize the real-time optimal control of the supply air volume during the main ventilator switchover process. The test results show that the MPC system can effectively switch the main ventilator, and the air volume of four air doors can well track the reference value during the switchover process. The operation time of each sampling time is 0.027 s, which meets the real-time requirements of the switchover process. The maximum fluctuation of supply air volume is only 0.9%, which is significantly better than the traditional PID control effect.
  • 图  1   矿井主要通风机切换过程结构

    Figure  1.   Structure of switchover process of mine main ventilators

    图  2   矿井主要通风机切换过程网络拓扑结构

    Figure  2.   Topology structure of switchover process of mine main ventilators

    图  3   主要通风机切换过程MPC系统结构

    Figure  3.   Model predictive control(MPC) system structure of switchover process of main ventilators

    图  4   4个风门的控制量

    Figure  4.   Control values of four air doors

    图  5   4个风门风量跟踪控制效果

    Figure  5.   Tracking control effect of air volume through four drampers

    图  6   供给风量

    Figure  6.   Supply air volume

    图  7   PID控制结果

    Figure  7.   PID control results

  • [1] 王前进,马小平,张守田. PLC软冗余在通风机监控系统中的应用[J]. 工矿自动化,2014,40(1):93-96.

    WANG Qianjin,MA Xiaoping,ZHANG Shoutian. Application of PLC soft redundancy in monitoring and control system for ventilator[J]. Industry and Mine Automation,2014,40(1):93-96.

    [2] 于励民,马小平,任中华,等. 矿井主通风机不停风倒机控制的研究与实现[J]. 工矿自动化,2010,36(9):133-137.

    YU Limin,MA Xiaoping,REN Zhonghua,et al. Research of switching ventilator control without blowing-out of main ventilator of mine and its implementation[J]. Industry and Mine Automation,2010,36(9):133-137.

    [3]

    GE Hengqing,MA Xiaoping,WU Xinzhong,et al. Study on mine main fan switchover aiming at invariant ventilation based on nonlinear constrained programming[J]. International Journal of Digital Content Technology and Its Applications,2012,6(17):496-505. DOI: 10.4156/jdcta.vol6.issue17.54

    [4]

    GE Hengqing,XU Guang,HUANG Jinxin,et al. A mine main fans switchover system with lower air flow volatility based on improved particle swarm optimization algorithm[J]. Advances in Mechanical Engineering,2019,11(3):1-10.

    [5] 柴天佑. 复杂工业过程运行优化与反馈控制[J]. 自动化学报,2013,39(11):1744-1757. DOI: 10.3724/SP.J.1004.2013.01744

    CHAI Tianyou. Operational optimization and feedback control for complex industrial processes[J]. Acta Automatica Sinica,2013,39(11):1744-1757. DOI: 10.3724/SP.J.1004.2013.01744

    [6] 任子晖,王翠,倪婷婷,等. 基于神经网络不停风倒机风量变化的研究[J]. 煤炭技术,2016,35(11):229-231.

    REN Zihui,WANG Cui,NI Tingting,et al. Research on air volume of reversing without stopping ventilation based on neural network[J]. Coal Technology,2016,35(11):229-231.

    [7]

    WANG Qianjin,MA Xiaoping,YANG Chunyu,et al. Modeling and control of mine main fan switchover system[J]. ISA Transactions,2019,85:189-199. DOI: 10.1016/j.isatra.2018.10.024

    [8]

    GE Hengqing, MA Xiaoping, WU Xinzhong, et al. Fuzzy PID control of mine main fan switchover aiming at invariant ventilation[C]. International Conference on Intelligence Science and Information Engineering, Wuhan, 2011: 325-328.

    [9] 董素玲. 基于模糊控制的煤矿主井通风机不停风倒机自动控制系统设计[J]. 工矿自动化,2015,41(9):39-43.

    DONG Suling. Design of automatic switchover control system without blowing-out of mine main ventilator based on fuzzy control[J]. Industry and Mine Automation,2015,41(9):39-43.

    [10]

    WANG Qianjin,DAI Wei,MA Xiaoping,et al. Multiple models and neural networks based adaptive PID decoupling control of mine main fan switchover system[J]. IET Control Theory and Applications,2018,12(4):446-455. DOI: 10.1049/iet-cta.2017.0701

    [11] 孙涛,夏振兴,王前进. 矿井通风机倒机过程自适应PID抗饱和控制器设计[J]. 工矿自动化,2019,45(3):90-94.

    SUN Tao,XIA Zhenxing,WANG Qianjin. Design of adaptive PID anti-saturation controller in switchover process of mine ventilator[J]. Industry and Mine Automation,2019,45(3):90-94.

    [12] 王前进,代伟,杨春雨,等. 煤矿主通风机切换系统建模与分析[J]. 煤炭学报,2018,43(增刊2):606-614.

    WANG Qianjin,DAI Wei,YANG Chunyu,et al. Modeling and analysis of coal mine main fan switchover system[J]. Journal of China Coal Society,2018,43(S2):606-614.

    [13]

    WANG Hao,NIE Wen,CHENG Weimin,et al. Effects of air volume ratio parameters on air curtain dust suppression in a rock tunnel's fully-mechanized working face[J]. Advanced Powder Technology,2018,29(2):230-244. DOI: 10.1016/j.apt.2017.11.007

    [14]

    RAY A L,COUSE D. Cement plant fan efficiency upgrades[J]. IEEE Transactions on Industry Applications,2017,53(2):1562-1568. DOI: 10.1109/TIA.2016.2631526

    [15]

    ZHENG Yan,WANG Jun. Model predictive control for tracking of underactuated vessels based on recurrent neural networks[J]. IEEE Journal of Oceanic Engineering,2012,37(4):717-726. DOI: 10.1109/JOE.2012.2201797

    [16]

    XIAO Hanzhen,LI Zhijun,YANG Chenguang,et al. Robust stabilization of a wheeled mobile robot using model predictive control based on neurodynamics optimization[J]. IEEE Transactions on Industrial Electronics,2016,64(1):505-516.

  • 期刊类型引用(4)

    1. 王少锋,吴毓萌,石鑫垒. 地下矿山非爆机械化智能采掘(英文). Transactions of Nonferrous Metals Society of China. 2024(01): 265-282 . 百度学术
    2. 王健. 井下储水采空区多应力监测预警分析. 煤矿机电. 2024(06): 38-42 . 百度学术
    3. 王健,屈世甲,于世雷. 煤矿地下积水采空区挡水煤柱分级预警模型研究. 煤矿安全. 2023(12): 213-219 . 百度学术
    4. 王苏健,贾澎涛,金声尧. 基于随机森林回归的围岩应力插值方法. 西安科技大学学报. 2021(02): 274-281 . 百度学术

    其他类型引用(4)

图(7)
计量
  • 文章访问数:  335
  • HTML全文浏览量:  76
  • PDF下载量:  27
  • 被引次数: 8
出版历程
  • 收稿日期:  2022-05-14
  • 修回日期:  2023-01-03
  • 网络出版日期:  2023-02-01
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回