采煤机螺旋滚筒装煤性能优化

李明昊, 牛昊, 范佳艺, 赵丽娟, 乔捷

李明昊,牛昊,范佳艺,等. 采煤机螺旋滚筒装煤性能优化[J]. 工矿自动化,2022,48(10):129-135. DOI: 10.13272/j.issn.1671-251x.2022050041
引用本文: 李明昊,牛昊,范佳艺,等. 采煤机螺旋滚筒装煤性能优化[J]. 工矿自动化,2022,48(10):129-135. DOI: 10.13272/j.issn.1671-251x.2022050041
LI Minghao, NIU Hao, FAN Jiayi, et al. Optimization of coal loading performance of shearer screw drum[J]. Journal of Mine Automation,2022,48(10):129-135. DOI: 10.13272/j.issn.1671-251x.2022050041
Citation: LI Minghao, NIU Hao, FAN Jiayi, et al. Optimization of coal loading performance of shearer screw drum[J]. Journal of Mine Automation,2022,48(10):129-135. DOI: 10.13272/j.issn.1671-251x.2022050041

采煤机螺旋滚筒装煤性能优化

基金项目: 国家自然科学基金项目(51674134);辽宁省博士科研启动基金计划项目(2020-BS-153);辽宁省教育厅青年科技人才“育苗”项目(LG202029)。
详细信息
    作者简介:

    李明昊(1990—),男,辽宁铁岭人,副教授,博士,研究方向为机械系统动力学分析与控制、刚柔耦合可靠性技术,E-mail:lmh0315@126.com

    通讯作者:

    牛昊(2000—),男,山西晋中人,硕士研究生,研究方向为现代设计理论与应用技术,E-mail:nh0509@126.com

  • 中图分类号: TD421

Optimization of coal loading performance of shearer screw drum

  • 摘要: 螺旋滚筒是采煤机截割煤岩的直接机构,螺旋滚筒几何参数和截割策略的优化设计对提高滚筒装煤性能有重要影响。现有基于有限元和二维离散元法的螺旋滚筒优化设计大多基于单一或部分因素,未综合考虑多设计变量对螺旋滚筒装煤性能的影响,难以同时得到几何参数及运动学参数最优解。针对该问题,基于煤的物理力学特性参数测试结果,利用离散元分析软件EDEM构建采煤机螺旋滚筒截割煤壁耦合模型,对采煤机螺旋滚筒的装煤性能进行数值模拟,采用单因素法分析了螺旋滚筒螺旋升角、直径、筒毂直径、截割深度、转速及牵引速度对装煤性能的影响;基于离散元分析结果设计螺旋滚筒三因素三水平正交试验,通过极差分析得出几何参数中滚筒直径、筒毂直径、螺旋升角,运动学参数中截割深度、滚筒转速、牵引速度对螺旋滚筒装煤性能的影响依次减小;根据正交试验结果得出螺旋滚筒最优几何参数方案为13°螺旋升角、1 300 mm滚筒直径、475 mm筒毂直径,最优截割策略为600 mm截割深度、58 r/min滚筒转速、8 m/min牵引速度,最优参数下螺旋滚筒装煤率为76.39%,较优化前提高了15.82%。
    Abstract: The screw drum is the direct mechanism of the shearer cutting coal and rock. The optimization design of geometric parameters and cutting strategy of screw drum has an important impact on improving coal loading performance of drum. The existing optimization design schemas of the screw drum based on the finite element method and the two-dimensional discrete element method are mostly based on a single factor or part factors. The influence of multiple design variables on the coal loading performance of the screw drum is not comprehensively considered. It is difficult to obtain the optimal solution of the geometric parameters and kinematic parameters simultaneously. In order to solve this problem, based on the test results of the physical and mechanical properties of coal, the coupling model of the shearer's screw drum cutting coal wall is established by using discrete element analysis software EDEM. The numerical simulation of coal loading performance of the shearer's screw drum is carried out. The single-factor method is used to analyze the influence of the spiral angle, diameter, hub diameter, cutting depth, drum rotation rate and traction speed of the screw drum on the coal loading performance. The three factors and three levels orthogonal test of the screw drum is designed based on the results of discrete element analysis. Through range analysis, the influence of geometric parameters of drum diameter, drum hub diameter and spiral rise angle, and kinematic parameters of cutting depth, drum rotation rate and traction speed on the coal loading performance of the screw drum is reduced in turn. According to the orthogonal test results, the optimal geometric parameters of the screw drum are 13° spiral rise angle, 1300 mm drum diameter and 475 mm drum hub diameter. The optimal cutting strategy is that the cutting depth is 600 mm, the drum rotation rate is 58 r/min, and the traction speed is 8 m/min. Under the optimal parameters, the coal loading rate of the screw drum is 76.39%, which is 15.82% higher than before.
  • 图  1   煤颗粒接触模型

    Figure  1.   Coal particles contact model

    图  2   煤颗粒运动学分析模型

    Figure  2.   Kinematics analysis model of coal particles

    图  3   煤样物理特性测试

    Figure  3.   Physical characteristics test of coal samples

    图  4   煤样力学特性测试

    Figure  4.   Mechanical characteristic test of coal samples

    图  5   螺旋滚筒截割煤壁耦合模型

    Figure  5.   Coupling model of screw drum cutting coal wall

    图  6   螺旋滚筒装煤效果仿真结果

    Figure  6.   Simulation results of coal loading effect of screw drum

    图  7   螺旋滚筒装煤效果统计

    Figure  7.   Statistics of coal loading effect of screw drum

    图  8   螺旋升角对采煤机装煤率的影响规律

    Figure  8.   Influence law of spiral rising angle on coal loading rate of shearer

    图  9   滚筒直径对采煤机装煤率的影响规律

    Figure  9.   Influence rule of drum diameter on coal loading rate of shearer

    图  10   筒毂直径对采煤机装煤率的影响规律

    Figure  10.   Influence rule of hub diameter on coal loading rate of shearer

    图  11   截割深度对采煤机装煤率的影响规律

    Figure  11.   Influence law of cutting depth on coal loading rate of shearer

    图  12   滚筒转速对采煤机装煤率的影响规律

    Figure  12.   Influence of drum rotation rate on coal loading rate of shearer

    图  13   牵引速度对采煤机装煤率的影响规律

    Figure  13.   Influence law of traction speed on coal loading rate of shearer

    表  1   正交试验因素水平

    Table  1   Factor levels of orthogonal test

    设计变量符号水平
    123
    螺旋升角/(°)a111315
    滚筒直径/mmb105011501300
    筒毂直径/mmc475525570
    截割深度/mmd600700800
    滚筒转速 /(r·min−1)e545862
    牵引速度/(m·min−1)f789
    下载: 导出CSV

    表  2   几何因素正交试验结果

    Table  2   Orthogonal test results of geometric factors

    试验
    编号
    因素水平装煤率/%
    abc
    1a1b1c161.47
    2a1b2c258.07
    3a1b3c363.87
    4a2b1c259.06
    5a2b2c357.54
    6a2b3c174.23
    7a3b1c358.08
    8a3b2c167.48
    9a3b3c271.38
    下载: 导出CSV

    表  3   几何因素极差分析

    Table  3   Range analysis of geometrical factors

    指标a/(°)b/mmc/mm
    L1183.41178.61203.18
    L2190.83183.09188.51
    L3196.94209.48179.49
    l161.1459.5467.73
    l263.6161.0362.84
    l365.6569.8359.83
    极差4.5110.297.90
    下载: 导出CSV

    表  4   运动学因素正交试验结果

    Table  4   Orthogonal test results of kinematic factors

    试验
    编号
    因素水平装煤率/%
    def
    1d1e1f161.47
    2d1e2f262.66
    3d1e3f361.94
    4d2e2f160.13
    5d2e3f261.37
    6d2e1f358.25
    7d3e3f157.72
    8d3e1f256.54
    9d3e2f355.82
    下载: 导出CSV

    表  5   运动学因素极差分析

    Table  5   Range analysis of kinematic factors

    指标d/mme/(r·min−1)f/(m·min−1)
    L1186.07176.26179.32
    L2179.75178.61180.57
    L3170.08181.03176.01
    l162.0258.7559.77
    l259.9259.5460.19
    l356.6960.3458.67
    极差5.331.591.52
    下载: 导出CSV
  • [1] 赵丽娟,王雅东,刘旭南. 薄煤层采煤机强力螺旋滚筒设计研究[J]. 机械科学与技术,2019,38(11):1712-1719. DOI: 10.13433/j.cnki.1003-8728.20190053

    ZHAO Lijuan,WANG Yadong,LIU Xu'nan. Design and simulation on powerful screw drum of thin coal seam shearer[J]. Mechanical Science and Technology for Aerospace Engineering,2019,38(11):1712-1719. DOI: 10.13433/j.cnki.1003-8728.20190053

    [2] 高魁东. 薄煤层滚筒采煤机装煤性能研究[D]. 徐州: 中国矿业大学, 2014.

    GAO Kuidong. Study on coal-loading performance of thin coal seam shearer[D]. Xuzhou: China University of Mining and Technology, 2014.

    [3] 曹杨,王灿,薛玉刚. 采煤机螺旋滚筒装载机理分析[J]. 煤矿机械,2015,36(9):127-128.

    CAO Yang,WANG Can,XUE Yugang. Mechanism analysis of shearer screw drum loading[J]. Coal Mine Machinery,2015,36(9):127-128.

    [4] 王灿. 工作面倾角对采煤机滚筒装煤效果影响研究[J]. 煤矿机械,2021,42(6):56-57. DOI: 10.13436/j.mkjx.202106018

    WANG Can. Research on influence of working face inclination angle on coal loading effect of shearer drum[J]. Coal Mine Machinery,2021,42(6):56-57. DOI: 10.13436/j.mkjx.202106018

    [5] 徐盼盼,刘送永,刘洋洋. 薄煤层采煤机鼓形滚筒装煤性能研究[J]. 煤炭科学技术,2020,48(3):93-99. DOI: 10.13199/j.cnki.cst.2020.03.009

    XU Panpan,LIU Songyong,LIU Yangyang. Research on coal loading performance of globoid drum in thin coal seam shearer[J]. Coal Science and Technology,2020,48(3):93-99. DOI: 10.13199/j.cnki.cst.2020.03.009

    [6]

    LIU Songyong,DU Changlong,ZHANG Jiajia,et al. Parameters analysis of shearer drum loading performance[J]. Mining Science and Technology,2011,21(5):621-624.

    [7] 田震,赵丽娟,张建军,等. 复杂煤层赋存条件下螺旋滚筒力学行为研究[J]. 机械科学与技术,2019,38(7):1041-1047. DOI: 10.13433/j.cnki.1003-8728.2019.20180283

    TIAN Zhen,ZHAO Lijuan,ZHANG Jianjun,et al. Study on mechanical behaviour of spiral drum under complex condition of coal seam[J]. Mechanical Science and Technology for Aerospace Engineering,2019,38(7):1041-1047. DOI: 10.13433/j.cnki.1003-8728.2019.20180283

    [8] 田震,赵丽娟,刘旭南,等. 基于离散元法的螺旋滚筒装煤性能研究[J]. 煤炭学报,2017,42(10):2758-2764. DOI: 10.13225/j.cnki.jccs.2017.0324

    TIAN Zhen,ZHAO Lijuan,LIU Xunan,et al. Loading performance of spiral drum based on discrete element method[J]. Journal of China Coal Society,2017,42(10):2758-2764. DOI: 10.13225/j.cnki.jccs.2017.0324

    [9] 王刚,袁康,蒋宇静,等. 基于颗粒离散元法的锚固节理剪切行为宏细观研究[J]. 煤炭学报,2014,39(12):2381-2389. DOI: 10.13225/j.cnki.jccs.2013.1847

    WANG Gang,YUAN Kang,JIANG Yujing,et al. Macro-micro mechanical study on bolted joint subjected to shear loading based on DEM[J]. Journal of China Coal Society,2014,39(12):2381-2389. DOI: 10.13225/j.cnki.jccs.2013.1847

    [10] 赵丽娟,范佳艺,刘雪景,等. 采煤机螺旋滚筒动态截割过程研究[J]. 机械科学与技术,2019,38(3):386-391. DOI: 10.13433/j.cnki.1003-8728.20180188

    ZHAO Lijuan,FAN Jiayi,LIU Xuejing,et al. Exploring dynamic cutting process of shearer's drum[J]. Mechanical Science and Technology for Aerospace Engineering,2019,38(3):386-391. DOI: 10.13433/j.cnki.1003-8728.20180188

    [11] 刘春生,于念君,张艳军. 极薄煤层采煤机滚筒的装煤过程与性能评价[J]. 黑龙江科技大学学报,2020,30(1):86-93. DOI: 10.3969/j.issn.2095-7262.2020.01.015

    LIU Chunsheng,YU Nianjun,ZHANG Yanjun. Loading process and performance evaluation of shearer drum for extremely thin coal seams[J]. Journal of Heilongjiang University of Science and Technology,2020,30(1):86-93. DOI: 10.3969/j.issn.2095-7262.2020.01.015

    [12] 马旭东,赵颖,刘元文,等. 基于正交试验的U型铜材模具参数优化[J]. 塑性工程学报,2022,29(1):110-118. DOI: 10.3969/j.issn.1007-2012.2022.01.016

    MA Xudong,ZHAO Ying,LIU Yuanwen,et al. Parameter optimization of U-shaped copper mold based on orthogonal test[J]. Journal of Plasticity Engineering,2022,29(1):110-118. DOI: 10.3969/j.issn.1007-2012.2022.01.016

    [13] 燕浩,刘梅清,梁兴,等. 基于正交试验大型轴流泵空化特性的数值模拟[J]. 华中科技大学学报(自然科学版),2014,42(12):35-40.

    YAN Hao,LIU Meiqing,LIANG Xing,et al. Numerical simulation on cavitation characteristics of large-scale axial-flow pumps based on orthogonal experiment[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition),2014,42(12):35-40.

  • 期刊类型引用(17)

    1. 侯挺,聂谦,薛兴伟. 弱化转移高水平应力技术在巷道修护中的研究与应用. 山东煤炭科技. 2025(01): 12-16 . 百度学术
    2. 陶志刚,许闯,李勇,王祥,王欢. 深埋高应力隧道软岩大变形开挖补偿控制研究. 西安科技大学学报. 2025(01): 86-97 . 百度学术
    3. 陈晓轩,李彦斌,李立功. 高应力软岩巷道破坏特征及最佳支护技术研究. 煤炭技术. 2024(03): 36-41 . 百度学术
    4. 吴少康,张俊文,徐佑林,宋治祥,张杨,范文兵,董续凯,张际涛,陈志松. 煤层群采动下围岩应力演化规律及协同控制技术研究. 煤炭科学技术. 2024(03): 24-37 . 百度学术
    5. 刘凯峰. 回采巷道锚注加固超前支护技术研究. 能源与节能. 2024(04): 215-218 . 百度学术
    6. 王浩,赵伟. 煤矿破碎围岩巷道支护机理和加固特性研究. 新疆钢铁. 2024(01): 40-42 . 百度学术
    7. 高学丰,马丁,张晓东. 软岩巷道淋水区域顶板破坏特征及控制技术研究. 内蒙古煤炭经济. 2024(06): 19-21 . 百度学术
    8. 谢贵峰,孙义迎,李震. 软岩巷道破坏机理及控制研究. 内蒙古煤炭经济. 2024(09): 64-66 . 百度学术
    9. Peng-Fei Cui,De-Lei Shang,Peng Chu,Ju Li,Da-Li Sun,Tian-Yu Wang,Ming-Zhong Gao,He-Ping Xie. Optimal depth of in-situ pressure-preserved coring in coal seams considering roadway excavation and drilling disturbance. Petroleum Science. 2024(05): 3517-3534 . 必应学术
    10. 赵瑞雪. 基于NPR锚索支护技术的软岩巷道变形控制研究. 采矿技术. 2024(06): 83-87 . 百度学术
    11. 耿友明,卢宏建. 高应力大断面巷道围岩加固技术研究. 煤炭技术. 2023(04): 65-67 . 百度学术
    12. 曹庆华,杨月飞,陈慧明,刘广伟. 深部沿空留巷超前锚索补强支护及数值模拟. 中国矿业. 2023(04): 133-139 . 百度学术
    13. 孟梦,咸玉建. 考虑采空区围岩大变形规律的巷道稳定支护技术研究. 煤化工. 2023(06): 125-128+132 . 百度学术
    14. 叶飞,严斌,张小宇. 巨厚煤层临空巷道大变形控制支护优化技术研究. 煤炭与化工. 2022(03): 45-47 . 百度学术
    15. 虎晓宏. 开拓煤业含水岩层条件下31轨道巷支护技术研究. 煤. 2022(05): 60-63 . 百度学术
    16. 刘延敏. 注浆加固技术在公路路基加固中的研究与应用. 交通世界. 2022(21): 159-161 . 百度学术
    17. 杨鹏,马平,赵俊达. 高强度开采条件下煤炭巷道锚杆支护技术. 煤炭工程. 2022(S1): 44-48 . 百度学术

    其他类型引用(8)

图(13)  /  表(5)
计量
  • 文章访问数:  319
  • HTML全文浏览量:  61
  • PDF下载量:  28
  • 被引次数: 25
出版历程
  • 收稿日期:  2022-05-15
  • 修回日期:  2022-10-11
  • 网络出版日期:  2022-07-11
  • 刊出日期:  2022-10-25

目录

    /

    返回文章
    返回