孤岛工作面碎软煤层跟管护孔钻进工艺研究

陈超, 陈天柱, 张马军, 王常委

陈超,陈天柱,张马军,等. 孤岛工作面碎软煤层跟管护孔钻进工艺研究[J]. 工矿自动化,2023,49(1):73-79. DOI: 10.13272/j.issn.1671-251x.2022040084
引用本文: 陈超,陈天柱,张马军,等. 孤岛工作面碎软煤层跟管护孔钻进工艺研究[J]. 工矿自动化,2023,49(1):73-79. DOI: 10.13272/j.issn.1671-251x.2022040084
CHEN Chao, CHEN Tianzhu, ZHANG Majun, et al. Research on pipe-following hole protection drilling technology in broken soft coal seam of the isolated island working face[J]. Journal of Mine Automation,2023,49(1):73-79. DOI: 10.13272/j.issn.1671-251x.2022040084
Citation: CHEN Chao, CHEN Tianzhu, ZHANG Majun, et al. Research on pipe-following hole protection drilling technology in broken soft coal seam of the isolated island working face[J]. Journal of Mine Automation,2023,49(1):73-79. DOI: 10.13272/j.issn.1671-251x.2022040084

孤岛工作面碎软煤层跟管护孔钻进工艺研究

基金项目: 陕西省重点研发计划项目(2023-YBGY-082)。
详细信息
    作者简介:

    陈超(1988—),男,江苏徐州人,工程师,硕士,主要从事矿山地质与水文地质技术管理工作,E-mail:867826653@qq.com

  • 中图分类号: TD712.6

Research on pipe-following hole protection drilling technology in broken soft coal seam of the isolated island working face

  • 摘要: 针对孤岛工作面高应力碎软煤层钻孔易卡钻、塌孔导致钻孔成孔难度大、瓦斯抽采效果差的问题,开展跟管护孔钻进工艺研究。选取王坡煤矿3206孤岛工作面作为试验地点,分析得出该工作面需要采用大转矩、高转速钻机,以增强钻具排渣效果及孔内事故处理能力,同时需要考虑高应力区段钻孔护壁工艺及孔内高效排渣工艺。提出采用跟管护孔钻进工艺过高应力区,以达到护壁效果;采用螺旋钻进氮气辅助排渣工艺,以增强排渣能力,降低钻进过程中煤炭自燃的风险;钻孔穿过高应力区后,通过优化钻具组合,进一步提高钻孔在碎软煤层中的成孔深度。现场试验结果表明:相比于直接采用回转钻进施工钻孔,采用二级护孔钻进工艺施工钻孔平均孔深提高149%,采用三级护孔钻进工艺施工钻孔平均孔深提高114%,说明跟管护孔钻进工艺比回转钻进工艺更适合3206孤岛工作面碎软煤层钻孔施工;插接式螺旋钻杆施工钻孔成孔率高于丝扣连接式螺旋钻杆,螺旋钻进氮气辅助排渣工艺的成孔深度明显大于干式螺旋排渣工艺;$ {\text{ϕ}}$100/63.5−28 mm插接密封式螺旋钻杆及氮气辅助排渣工艺最适合3206孤岛工作面瓦斯预抽钻孔施工,平均孔深为100.6 m,成孔率为80%,瓦斯抽采效果优于其他钻具及钻进排渣工艺。
    Abstract: It is easy to get stuck and collapse in the borehole of high stress and broken soft coal seam in the isolated island working face. This leads to great difficulty in borehole formation and poor gas extraction effect. In order to solve this problem, this paper puts forward a pipe-following borehole protection drilling technology. The 3206 isolated island working face of Wangpo Coal Mine is selected as the test site. It is analyzed that the working face needs to use high-torque and high-speed drilling rig to enhance the slag removal effect of the drilling tool and the capability to deal with accidents in the borehole. At the same time, it is necessary to consider the process of drilling wall protection in the high-stress section and the efficient slag removal process in the borehole. It is proposed to adopt the pipe-following borehole protection drilling technology in the high stress zone to achieve the effect of wall protection. The spiral drilling nitrogen-assisted slag removal process is adopted to enhance slag removal capacity and reduce the risk of coal spontaneous combustion during drilling. After the borehole passes through the high-stress area, the drilling depth of the borehole in the broken soft coal seam is further improved by optimizing the drilling tool assembly. The field test results show that the average hole depth is increased by 149% when using the second-stage hole protection drilling than when using rotary drilling directly. The average hole depth is increased by 114% when using the third-stage hole protection drilling. It shows that the pipe-following hole protection drilling is more suitable for the drilling construction of broken soft coal seam in 3206 island working face than the rotary drilling construction technology. The hole-forming rate of the plug-type screw drill pipe is higher than that of the screw thread-type screw drill pipe. The hole-forming depth of nitrogen assisted slag removal process for screw drilling is significantly greater than that of the dry screw slag removal process. ${\text{ϕ}} $100/63.5-28 mm plug-in sealed spiral drill pipe and nitrogen assisted slag removal process are most suitable for gas pre-extraction drilling construction in 3206 isolated island working face. The average hole depth is 100.6 m, and the hole formation rate is 80%. The gas extraction effect is better than other drilling tools and drilling slag removal technology.
  • 瓦斯治理一直是制约我国煤矿安全生产的一个难点。以钻孔抽采为主要技术手段的方法是现阶段煤层瓦斯治理的主要方法之一[1-2],但因地质构造、地应力等导致煤层整体胶结性差、煤层碎软,钻孔施工时易出现塌孔、卡钻、钻孔成孔深度小等现象,影响后续瓦斯抽采效果。特别是孤岛工作面,随着相邻工作面的回采,孤岛工作面矿压重新分布,由巷道至工作面内依次形成塑性破坏区、应力集中区和原岩应力区[3-7],在瓦斯预抽钻孔施工过程中,穿过塑性破坏区和应力集中区时塌孔、卡钻频繁,成孔难度极大,钻孔深度无法达到设计要求[8-11],产生的抽采盲区会带来安全隐患。

    针对碎软高应力煤层瓦斯抽采钻孔成孔难、成孔深度小的问题,国内相关研究机构在钻进装备升级改造[12]及施工工艺优化[13-15]等方面进行了现场试验,取得了一定效果,但针对应力集中区钻孔排渣效果差及易卡钻、埋钻等问题仍未形成有效解决方法。针对该问题,本文通过分析山西天地王坡煤业有限公司(简称王坡煤矿)瓦斯预抽钻孔成孔问题,提出跟管护孔过高应力区钻进工艺,对干式螺旋排渣、螺旋钻进氮气辅助排渣工艺进行对比分析,优选钻具组合,使钻孔穿过高应力区后继续向深部钻进,从而增加钻孔成孔深度。

    现有孤岛工作面应力分析研究表明,受相邻工作面开采影响,孤岛工作面内煤体应力重新分布,呈两侧大致对称分布的“马鞍形”,近巷道处煤体挤压破碎严重,应力得到一定程度释放,出现应力降低区,区域范围为0~15 m;向工作面深入,煤体受到上部岩层挤压,局部应力升高,出现应力集中区,区域范围为15~50 m;继续向工作面深入,煤体受采动影响范围减小,应力基本无变化,趋近原岩应力,属原岩应力范围。

    工作面瓦斯预抽钻孔垂直于巷道布置,依次穿过塑性破坏区、应力集中区和原岩应力区,如图1所示。钻孔施工时,开孔段(塑性破坏区)煤层破碎,煤体垮落,钻孔无法成孔或成孔形状不规则。卡钻频发段(应力集中区)煤体应力集中,钻杆受煤体挤压,出渣不畅,导致卡钻、埋钻。钻孔穿过应力集中区后,进入原岩应力区,该区段受采动扰动小,煤体结构完整,施工主要问题是如何将煤渣运移至孔口。

    图  1  钻孔区段分布
    Figure  1.  Distribution of drilling sections

    选取王坡煤矿3206孤岛工作面作为试验地点。工作面垂直于集中主运巷向南布置,两侧为3204和3208工作面采空区,终采线以里走向长度为2 092 m,开切眼长度为153 m。王坡煤矿前期碎软煤层钻孔施工主要选用ZYW−1900R和ZDY6000LR钻机,钻具配套${\text{ϕ}} $73 mm螺旋钻杆,采用干式螺旋排渣工艺。钻孔施工中,钻进至应力集中区时,因干式螺旋排渣工艺效率低,钻渣不能及时排出孔外,且煤体受地应力挤压,卡钻现象频发,加上钻机转矩小,导致钻孔无法继续向深度钻进,钻孔成孔率低。钻孔施工情况见表1

    表  1  钻孔施工情况
    Table  1.  Drilling construction situation
    孔号孔径/mm孔深/m班次效率/
    (m·班−1)
    终孔原因
    11132345.75塌孔、卡钻
    211347315.67
    311323210.50
    411343410.75
    下载: 导出CSV 
    | 显示表格

    针对王坡煤矿3206孤岛工作面瓦斯预抽钻孔成孔难问题,需要采用大转矩、高转速钻机,以增强钻具排渣效果及孔内事故处理能力;同时需要考虑高应力区段钻孔护壁工艺及孔内高效排渣工艺。

    针对王坡煤矿3206孤岛工作面高应力、碎软煤层成孔问题,提出采用跟管护孔钻进工艺过高应力区,以达到护壁效果。钻孔穿过高应力区后,通过优化钻具组合,进一步提高钻孔施工深度。钻孔施工工艺流程如图2所示。

    图  2  钻孔施工流程
    Figure  2.  Drilling construction flow

    跟管护孔钻进工艺是指在钻进过程中因地层破碎无法一次钻进成孔时,不需提钻,采用多级套管钻具组合沿一级成孔钻具钻进方向支护塌孔段孔壁,使钻孔向深部钻进。根据孤岛工作面煤层地质条件,一般将跟管护孔钻进分为二级护孔钻进和三级护孔钻进。

    (1) 二级护孔钻进。在煤层偏软但整体稳定性较好地层,一级成孔钻具可直接钻进穿过塌孔段,但在钻孔向深度钻进过程中,该孔段容易塌孔积渣,影响后续钻孔施工效率及施工深度,故需采用二级套管钻具跟随一级成孔钻具穿过塌孔段,进行孔壁支护,当一级成孔钻具钻进至目标孔深后,依次提出二级套管钻具和一级成孔钻具。二级护孔钻进工艺如图3所示。

    图  3  二级护孔钻进工艺
    Figure  3.  The second-stage hole protection drilling technology

    (2) 三级护孔钻进。在煤层碎软且应力显现地层,一级成孔钻具无法直接钻进穿过该区段。在一级成孔钻具钻进困难时,采用二级套管钻具钻进至一级成孔钻具钻头位置支护孔壁,一级成孔钻具继续钻进。若再次出现钻进困难,采用三级套管钻具钻进至二级套管钻具钻头位置进行孔壁支护,改善二级套管钻具钻进环境,使其能跟管钻进至一级成孔钻具钻头位置支护孔壁,一级成孔钻具继续向深部钻进至目标孔深后,依次提出三级套管钻具、二级套管钻具和一级成孔钻具。三级护孔钻进工艺如图4所示。

    图  4  三级护孔钻进工艺
    Figure  4.  The third-stage hole protection drilling technology

    螺旋钻进氮气辅助排渣工艺是在原有干式螺旋钻进工艺的基础上,对螺旋钻杆进行改造,使其具备传输水或空气等介质的性能,通过制氮装置将具有一定压力的压缩氮气作为冲洗介质,在孔壁与钻杆构成的环孔间隙内形成氮气流,携带钻进过程中产生的钻屑返回孔口,同时降低钻头温度。该工艺相较于传统干式螺旋钻进和空气螺旋钻进工艺,增强了排渣能力,此外,气体还有利于钻头、钻具的冷却,降低了钻进过程中煤炭自燃的风险。

    根据跟管护孔钻进工艺需要,在ZDY6500LP钻机基础上,改变钻机回转器齿轮箱传动结构,一级传动变为行星轮齿轮传动,利用其减速比大的优点实现整体传动比的增大,同时提高电动机排量,将钻机最大转矩从6 500 N·m提升至10 000 N·m,并校核配套托板和夹持器夹紧力,确保钻机在“双高”(高转矩、高转速)状态下保持稳定工作状态。同时优化钻机动力头,采用中心通孔结构,实现中间加杆和后方加杆,满足先导钻具和跟管钻具加卸要求。增强钻机的高转速性能,提高煤渣离心力;同时,钻孔周围煤体来压卡住钻杆时,利用钻机的大转矩,通过强力回转、高给进力、起拔力的快速加压和释放,震动钻杆,松动周围煤渣,实现钻杆解卡,使钻孔继续向深部钻进。改造后ZDY6500LP钻机主要参数见表2

    表  2  钻机主要参数
    Table  2.  Main technical data of drilling rig
    主要性能指标参数
    额定转矩/(N·m)1 750~10 000
    额定转速/(r·min−160~200
    主轴倾角/(°)−90~+90
    最大给进/起拔力/kN125/190
    电动机功率/kW90
    给进/起拔行程/mm1 300
    钻机质量/kg6 800
    钻机尺寸(长×宽×高)/(m×m×m)4 950×1 250×2 100
    下载: 导出CSV 
    | 显示表格

    对于碎软煤层,钻进中经常出现大范围塌孔,孔内煤渣量大,若排渣不及时,易造成卡钻、埋钻事故。因此,选配高效排渣钻具组合是碎软煤层瓦斯预抽钻孔成孔关键。针对王坡煤矿煤层特点及原有设备钻进情况,选取4种钻杆进行钻进试验:${\text{ϕ}} $60.3/95 mm插接式螺旋钻杆,${\text{ϕ}} $100/63.5−28 mm插接密封式螺旋钻杆,${\text{ϕ}} $73/89 mm宽翼片螺旋钻杆,${\text{ϕ}} $89 mm三棱螺旋钻杆。钻具性能对比见表3

    表  3  钻具性能对比
    Table  3.  Performance comparison of drilling tools
    钻具组合螺旋叶片连接方式排渣形式
    ${\text{ϕ}} $60.3/95 mm焊接插接干式螺旋
    ${\text{ϕ}} $100/63.5−28 mm焊接插接干式螺旋/
    氮气辅助
    ${\text{ϕ}} $73/89 mm铣槽丝扣连接干式螺旋/
    氮气辅助
    ${\text{ϕ}} $89 mm三棱铣槽丝扣连接干式螺旋/
    氮气辅助
    下载: 导出CSV 
    | 显示表格

    一级成孔钻具直径为89~100 mm,综合考虑各级钻具环空间隙排渣效果及钻孔孔径大小,二级套管钻具选取${\text{ϕ}} $127 mm套管钻杆配套${\text{ϕ}} $146 mm套管钻头,三级套管钻具选取${\text{ϕ}} $159 mm套管钻杆配套${\text{ϕ}} $180 mm套管钻头。因钻进工序不同,一级成孔钻具多为正丝结构,故二级套管钻具设计成反丝丝扣连接,三级套管钻具设计成正丝丝扣连接。同时为加强套管钻具与孔壁之间环空排渣效果,套管钻杆沿周向焊接3排肋条,套铣钻杆结构如图5所示。

    图  5  套铣钻杆结构
    Figure  5.  Structure of milling drill pipe

    3206孤岛工作面共布置有3条巷道,分别为3206运输巷、3206回风巷和3206高抽巷。主采3号煤层,煤层平均厚度为4.45 m,煤层稳定,全区可采,煤层倾角为2~10°,平均倾角为6°;煤体内部弱面极其发育,煤体发脆,导致整体强度显著降低,自身承载能力很小,煤层顶底板情况见表4

    表  4  煤层顶底板情况
    Table  4.  The roof-floor of coal seam
    顶底板岩石类别厚度/m岩性特征
    基本顶石英砂岩5.89灰白色细粒长石石英砂岩,有时相变为粉砂岩或泥质粉砂岩,交错层理发育
    直接顶砂质泥岩10.68黑色泥岩,局部含粉砂,含植物化石,局部见炭质泥岩
    伪顶炭质泥岩0.3黑色,质软,含植物化石,随采掘脱落
    直接底泥岩9.16灰黑色−黑色泥岩,夹薄层粉砂质泥岩,上部含植物化石,底部偶见4号煤,不可采,平均厚0.01 m
    基本底石英砂岩2.03灰白色中细粒长石石英砂岩,硅质胶结
    下载: 导出CSV 
    | 显示表格

    试验钻孔沿3206孤岛工作面回风巷成排布置,垂直于巷道顺煤层方向。根据工作面瓦斯赋存情况,为了实现应抽尽抽,设计终孔间距为4 m,孔深为132 m;依据煤层赋存情况,设计钻孔倾角为−13~2°,并根据实际煤岩钻进情况进行调整;设计开孔高度为1.5 m。钻孔设计平面布置如图6所示。

    图  6  钻孔设计平面布置
    Figure  6.  Plane layout of drilling design

    矿方前期未采用跟管护孔钻进工艺施工钻孔4个,均出现塌孔、卡钻现象,最大钻孔深度为47 m。采用跟管护孔钻进工艺施工68个钻孔(含8个探测孔),平均孔深为85.9 m,最大孔深为150 m。其中使用二级护孔工艺施工钻孔47个,总进尺为4 217 m,平均孔深为89.7 m;二级护孔管深度为16~28 m,平均护孔深度为22 m。使用三级护孔工艺施工钻孔21个,总进尺为1 621.5 m,平均孔深为77.2 m;三级护孔管深度为15~25 m,平均护孔深度为20 m;二级护孔管深度达30~52 m,平均护孔深度为41 m。钻孔施工试验结果见表5

    表  5  钻孔施工试验结果
    Table  5.  Drilling construction test results
    施工工艺钻孔
    个数
    平均
    孔深/m
    最大
    孔深/m
    二级护孔
    深度/m
    三级护孔
    深度/m
    二级护孔4789.715016~28
    三级护孔2177.213215~2530~52
    回转钻进43647
    下载: 导出CSV 
    | 显示表格

    对比分析可知,相比于直接采用回转钻进施工钻孔,采用二级护孔钻进工艺施工钻孔平均孔深提高149%,采用三级护孔钻进工艺施工钻孔平均孔深提高114%,说明跟管护孔钻进工艺比回转钻进施工工艺更适合3206孤岛工作面碎软煤层钻孔施工。二级护孔成孔深度大于三级护孔成孔深度,主要是因为在高应力区,当二级护孔工艺无法满足成孔深度时,继续采用三级护孔工艺,此类钻孔孔内应力表现明显,塌孔、卡钻现象较多,导致成孔深度较小。

    钻孔穿过高应力区后,对比分析不同钻具组合和钻进排渣工艺施工效果,钻孔数据见表6,柱状图如图7所示。① ${\text{ϕ}} $60.3/95 mm插接式钻杆采用干式螺旋高速回转钻进工艺,共施工23个钻孔,累计进尺为1 602 m,钻进效率为94.2 m/d,平均单孔深度为69.7 m,最大单孔深度为132 m;孔深大于100 m的钻孔12个,钻孔成孔率为60%。② ${\text{ϕ}} $73/89 mm螺旋钻杆采用氮气辅助排渣钻进工艺,共施工10个钻孔,累计进尺为837.5 m,钻进效率为119.6 m/d,平均单孔深度为83.8 m,最大单孔深度为132 m;孔深大于100 m的钻孔5个,钻孔成孔率为55.6%。③ ${\text{ϕ}} $89 mm三棱螺旋钻杆采用氮气辅助排渣钻进工艺,共施工13个钻孔,累计进尺为1 185 m,钻进效率为118.5 m/d,平均单孔深度为91.2 m,最大单孔深度为150 m;孔深大于100 m的钻孔6个,钻孔成孔率为54.5%。④ ${\text{ϕ}} $100/63.5−28 mm插接密封式螺旋钻杆采用氮气辅助排渣钻进工艺,施工完成22个钻孔(含2个探测孔),累计进尺为2 214 m,钻进效率为123 m/d,平均单孔深度为83.8 m,最大单孔深度为132 m;孔深大于100 m的钻孔16个,钻孔成孔率为80%。

    表  6  钻孔数据
    Table  6.  Borehole data
    钻具组合钻孔
    个数
    累计
    进尺/m
    平均
    孔深/m
    成孔率/%效率/
    (m·d−1)
    ${\text{ϕ}} $60.3/95 mm231 60269.76094.2
    ${\text{ϕ}} $73/89 mm10837.583.855.6119.6
    ${\text{ϕ}} $89 mm三棱131 18591.254.5118.5
    ${\text{ϕ}} $100/63.5−28 mm222 214100.680123
    下载: 导出CSV 
    | 显示表格
    图  7  钻孔施工效果对比
    Figure  7.  Comparison of drilling construction effects

    通过4种钻具组合施工对比分析可知:插接式螺旋钻杆施工钻孔成孔率高于丝扣连接式螺旋钻杆,钻孔穿过应力集中段时,插接式螺旋钻杆可采用正转、反转强力回转扫孔排渣,保证钻孔顺利通过该孔段;对比钻孔成孔深度,螺旋钻进氮气辅助排渣工艺明显优于干式螺旋排渣工艺。综合成孔深度及成孔率,3206孤岛工作面成孔最优钻具组合及工艺是选取${\text{ϕ}} $100/63.5−28 mm插接密封式螺旋钻杆和氮气辅助排渣工艺。

    在王坡煤矿3206孤岛工作面施工的68个钻孔均采用两堵一注封孔方式封孔12 m,将4种不同钻杆施工的钻孔分组抽采,以分析不同钻具组合施工钻孔的抽采效果,结果如图8图9所示。

    图  8  瓦斯抽采体积分数
    Figure  8.  Gas drainage volume fraction
    图  9  平均单孔瓦斯抽采纯量
    Figure  9.  Average net gas drainage volume of single hole

    图8图9可知,采用${\text{ϕ}} $100/63.5−28 mm插接密封式螺旋钻杆、${\text{ϕ}} $89 mm三棱螺旋钻杆和${\text{ϕ}} $73/89 mm大螺旋钻杆结合氮气辅助排渣施工的钻孔,其瓦斯抽采体积分数和平均单孔瓦斯抽采量均优于${\text{ϕ}} $60.3/95 mm插接式螺旋钻杆结合干式螺旋排渣施工的钻孔;而氮气辅助排渣工艺中,${\text{ϕ}} $100/63.5−28 mm插接密封式螺旋钻杆的抽采效果又优于另外2种钻杆,原因在于成孔深度及插接密封式螺旋钻杆的大螺旋结构增加了孔内掏煤量和钻孔直径。

    (1) 结合孤岛工作面应力特征,分析了不同孔段钻孔成孔问题,采用跟管护孔钻进工艺提高钻孔过高应力区的成孔率。

    (2) 通过氮气辅助排渣,进一步提高了钻进排渣效率,对比干式螺旋钻进工艺,钻孔成孔深度和钻进效率显著提高。

    (3) 对钻机进行升级改造,改造后的大转矩钻机施工搬迁方便,且在处理卡钻、埋钻及穿过应力集中段时的强力回转能满足施工需要,同时满足跟管护孔钻进施工工艺需要,提高钻孔过高应力区成孔率。

    (4) 现场试验效果表明,综合考虑成孔率、成孔深度和瓦斯抽采效果,跟管护孔钻进工艺、${\text{ϕ}} $100/63.5−28 mm插接密封式螺旋钻杆及氮气辅助排渣工艺最适合3206孤岛工作面瓦斯预抽钻孔施工。

  • 图  1   钻孔区段分布

    Figure  1.   Distribution of drilling sections

    图  2   钻孔施工流程

    Figure  2.   Drilling construction flow

    图  3   二级护孔钻进工艺

    Figure  3.   The second-stage hole protection drilling technology

    图  4   三级护孔钻进工艺

    Figure  4.   The third-stage hole protection drilling technology

    图  5   套铣钻杆结构

    Figure  5.   Structure of milling drill pipe

    图  6   钻孔设计平面布置

    Figure  6.   Plane layout of drilling design

    图  7   钻孔施工效果对比

    Figure  7.   Comparison of drilling construction effects

    图  8   瓦斯抽采体积分数

    Figure  8.   Gas drainage volume fraction

    图  9   平均单孔瓦斯抽采纯量

    Figure  9.   Average net gas drainage volume of single hole

    表  1   钻孔施工情况

    Table  1   Drilling construction situation

    孔号孔径/mm孔深/m班次效率/
    (m·班−1)
    终孔原因
    11132345.75塌孔、卡钻
    211347315.67
    311323210.50
    411343410.75
    下载: 导出CSV

    表  2   钻机主要参数

    Table  2   Main technical data of drilling rig

    主要性能指标参数
    额定转矩/(N·m)1 750~10 000
    额定转速/(r·min−160~200
    主轴倾角/(°)−90~+90
    最大给进/起拔力/kN125/190
    电动机功率/kW90
    给进/起拔行程/mm1 300
    钻机质量/kg6 800
    钻机尺寸(长×宽×高)/(m×m×m)4 950×1 250×2 100
    下载: 导出CSV

    表  3   钻具性能对比

    Table  3   Performance comparison of drilling tools

    钻具组合螺旋叶片连接方式排渣形式
    ${\text{ϕ}} $60.3/95 mm焊接插接干式螺旋
    ${\text{ϕ}} $100/63.5−28 mm焊接插接干式螺旋/
    氮气辅助
    ${\text{ϕ}} $73/89 mm铣槽丝扣连接干式螺旋/
    氮气辅助
    ${\text{ϕ}} $89 mm三棱铣槽丝扣连接干式螺旋/
    氮气辅助
    下载: 导出CSV

    表  4   煤层顶底板情况

    Table  4   The roof-floor of coal seam

    顶底板岩石类别厚度/m岩性特征
    基本顶石英砂岩5.89灰白色细粒长石石英砂岩,有时相变为粉砂岩或泥质粉砂岩,交错层理发育
    直接顶砂质泥岩10.68黑色泥岩,局部含粉砂,含植物化石,局部见炭质泥岩
    伪顶炭质泥岩0.3黑色,质软,含植物化石,随采掘脱落
    直接底泥岩9.16灰黑色−黑色泥岩,夹薄层粉砂质泥岩,上部含植物化石,底部偶见4号煤,不可采,平均厚0.01 m
    基本底石英砂岩2.03灰白色中细粒长石石英砂岩,硅质胶结
    下载: 导出CSV

    表  5   钻孔施工试验结果

    Table  5   Drilling construction test results

    施工工艺钻孔
    个数
    平均
    孔深/m
    最大
    孔深/m
    二级护孔
    深度/m
    三级护孔
    深度/m
    二级护孔4789.715016~28
    三级护孔2177.213215~2530~52
    回转钻进43647
    下载: 导出CSV

    表  6   钻孔数据

    Table  6   Borehole data

    钻具组合钻孔
    个数
    累计
    进尺/m
    平均
    孔深/m
    成孔率/%效率/
    (m·d−1)
    ${\text{ϕ}} $60.3/95 mm231 60269.76094.2
    ${\text{ϕ}} $73/89 mm10837.583.855.6119.6
    ${\text{ϕ}} $89 mm三棱131 18591.254.5118.5
    ${\text{ϕ}} $100/63.5−28 mm222 214100.680123
    下载: 导出CSV
  • [1] 孔维一,赵和平,刘泉霖,等. 瓦斯抽采钻孔喷涂式封孔技术[J]. 工矿自动化,2021,47(12):19-24. DOI: 10.13272/j.issn.1671-251x.2021050022

    KONG Weiyi,ZHAO Heping,LIU Quanlin,et al. Spray sealing technology for gas extraction drilling[J]. Industry and Mine Automation,2021,47(12):19-24. DOI: 10.13272/j.issn.1671-251x.2021050022

    [2] 刘飞,许超,王鲜,等. 顺煤层超长定向钻孔钻压传递规律研究[J]. 工矿自动化,2019,45(8):97-100.

    LIU Fei,XU Chao,WANG Xian,et al. Research of weight on bit transmission law of ultra-long directional borehole along coal seam[J]. Industry and Mine Automation,2019,45(8):97-100.

    [3] 郭永军. 王坡矿3210孤岛工作面矿压分布规律探讨[J]. 江西煤炭科技,2020(2):1-3. DOI: 10.3969/j.issn.1006-2572.2020.02.002

    GUO Yongjun. Study on law of rock pressure at 3210 island coal face in Wangpo Colliery[J]. Jiangxi Coal Science & Technology,2020(2):1-3. DOI: 10.3969/j.issn.1006-2572.2020.02.002

    [4] 刘鑫. 孤岛工作面水侵沿空巷道围岩稳控技术研究[J]. 工矿自动化,2021,47(9):118-125.

    LIU Xin. Research on stability control technology of surrounding rock along goaf roadway with water intrusion in isolated island working face[J]. Industry and Mine Automation,2021,47(9):118-125.

    [5] 姜希印,陶维国. 孤岛工作面冲击地压多指标监测及危险性区域划分[J]. 工矿自动化,2020,46(1):44-49.

    JIANG Xiyin,TAO Weiguo. Multi-index monitoring of rock burst and risk zone division of island mining coal face[J]. Industry and Mine Automation,2020,46(1):44-49.

    [6] 张茂微,鲁健. 孤岛工作面过上覆采空区采场及顶板应力演化规律研究[J]. 煤炭工程,2020,52(12):108-112.

    ZHANG Maowei,LU Jian. Stress evolution law of stope and roof of isolated working face advancing beneath overlying goaf[J]. Coal Engineering,2020,52(12):108-112.

    [7] 郭忠华. 孤岛工作面巷道钻孔卸压机理及关键参数确定[J]. 太原理工大学学报,2020,51(6):906-911. DOI: 10.16355/j.cnki.issn1007-9432tyut.2020.06.018

    GUO Zhonghua. Borehole destressing mechanism and key parameters determination of roadway in isolated working face[J]. Journal of Taiyuan University of Technology,2020,51(6):906-911. DOI: 10.16355/j.cnki.issn1007-9432tyut.2020.06.018

    [8] 范晓刚,马钱钱,范彦阳. 应力集中区瓦斯抽采钻孔施工工艺研究与应用[J]. 能源技术与管理,2019,44(1):34-36. DOI: 10.3969/j.issn.1672-9943.2019.01.014

    FAN Xiaogang,MA Qianqian,FAN Yanyang. Study and application of gas drainage drilling technology in stress concentration area[J]. Energy Technology and Management,2019,44(1):34-36. DOI: 10.3969/j.issn.1672-9943.2019.01.014

    [9] 郝永进,李乔乔,王毅,等. 松软突出煤层复合排渣钻进技术试验研究[J]. 探矿工程(岩土钻掘工程),2016,43(6):22-25.

    HAO Yongjin,LI Qiaoqiao,WANG Yi,et al. Composite slag discharging drilling technology in soft and outburst coal seam[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling),2016,43(6):22-25.

    [10] 张宏钧,姚克,张幼振. 松软煤层螺旋钻杆与压风复合排渣钻进技术装备[J]. 煤矿安全,2017,48(7):99-102. DOI: 10.13347/j.cnki.mkaq.2017.07.026

    ZHANG Hongjun,YAO Ke,ZHANG Youzhen. Spiral drill pipe and composite slag discharge drilling technology and equipment in soft coal seam[J]. Safety in Coal Mines,2017,48(7):99-102. DOI: 10.13347/j.cnki.mkaq.2017.07.026

    [11] 方俊,李泉新,许超,等. 松软突出煤层瓦斯抽采钻孔施工技术及发展趋势[J]. 煤炭科学技术,2018,46(5):130-137,172.

    FANG Jun,LI Quanxin,XU Chao,et al. Construction technology and development tendency of gas drainage borehole in soft and outburst seam[J]. Coal Science and Technology,2018,46(5):130-137,172.

    [12] 孙平贺,刘伟胜,杨涵涵,等. 中国非开挖水平定向钻进装备与技术研究应用进展[J]. 工程科学学报,2022,44(1):122-130. DOI: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201012

    SUN Pinghe,LIU Weisheng,YANG Hanhan,et al. Progress in research and applications of trenchless horizontal directional drilling equipment and technology in China[J]. Chinese Journal of Engineering,2022,44(1):122-130. DOI: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201012

    [13] 许超,姜磊,王鲜,等. 顺煤层超长定向钻孔复合钻进摩阻规律研究[J]. 煤田地质与勘探,2021,49(5):265-271.

    XU Chao,JIANG Lei,WANG Xian,et al. Friction law of compound drilling along the coal seam with super-long directional drilling[J]. Coal Geology & Exploration,2021,49(5):265-271.

    [14] 宋传祥,贾楠生,季文淼,等. 定向钻进技术与装备在穿层定向长钻孔中的应用[J]. 钻探工程,2021,48(8):83-88.

    SONG Chuanxiang,JIA Nansheng,JI Wenmiao,et al. Application of directional drilling technology and equipment in cross-bed directional long hole drilling[J]. Drilling Engineering,2021,48(8):83-88.

    [15] 赵建国,李泉新,刘建林,等. 煤矿井下双级双速扩孔技术研究与应用[J]. 煤炭科学技术,2021,49(7):133-138. DOI: 10.13199/j.cnki.cst.2021.07.018

    ZHAO Jianguo,LI Quanxin,LIU Jianlin,et al. Research and application of two-stage and two-speed reaming technology in coal mine[J]. Coal Science and Technology,2021,49(7):133-138. DOI: 10.13199/j.cnki.cst.2021.07.018

  • 期刊类型引用(3)

    1. 薛江达,孙永康,王军,张庚. 水力压裂弱化顶板护孔技术. 工矿自动化. 2024(03): 160-166 . 本站查看
    2. 宋昱播. 复杂软弱煤层条件下高转速大扭矩钻探装备设计及试验研究. 煤矿安全. 2024(06): 200-205 . 百度学术
    3. 段会军. 碎软煤层高速螺旋钻探装备研制与实践. 煤矿机械. 2024(10): 165-168 . 百度学术

    其他类型引用(0)

图(9)  /  表(6)
计量
  • 文章访问数:  207
  • HTML全文浏览量:  57
  • PDF下载量:  18
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-04-28
  • 修回日期:  2022-12-29
  • 网络出版日期:  2022-08-29
  • 刊出日期:  2023-02-01

目录

/

返回文章
返回