基于改进完备集成经验模态分解的钢丝绳缺陷漏磁检测方法

钟小勇, 陈科安, 张小红

钟小勇,陈科安,张小红. 基于改进完备集成经验模态分解的钢丝绳缺陷漏磁检测方法[J]. 工矿自动化,2022,48(7):118-124. DOI: 10.13272/j.issn.1671-251x.2022020037
引用本文: 钟小勇,陈科安,张小红. 基于改进完备集成经验模态分解的钢丝绳缺陷漏磁检测方法[J]. 工矿自动化,2022,48(7):118-124. DOI: 10.13272/j.issn.1671-251x.2022020037
ZHONG Xiaoyong, CHEN Ke'an, ZHANG Xiaohong. Steel wire rope defect magnetic flux leakage detection method based on improved complementary ensemble empirical mode decomposition[J]. Journal of Mine Automation,2022,48(7):118-124. DOI: 10.13272/j.issn.1671-251x.2022020037
Citation: ZHONG Xiaoyong, CHEN Ke'an, ZHANG Xiaohong. Steel wire rope defect magnetic flux leakage detection method based on improved complementary ensemble empirical mode decomposition[J]. Journal of Mine Automation,2022,48(7):118-124. DOI: 10.13272/j.issn.1671-251x.2022020037

基于改进完备集成经验模态分解的钢丝绳缺陷漏磁检测方法

基金项目: 国家自然科学基金项目(51665019, 61763017);江西省研究生创新专项资金项目(YC2020-S479)。
详细信息
    作者简介:

    钟小勇(1964—),男,江西遂川人,教授级高级工程师,硕士,主要研究方向为安全智能诊断与无损检测、嵌入式系统及应用,E-mail:zhongxy52@jxust.edu.cn

  • 中图分类号: TD534.6

Steel wire rope defect magnetic flux leakage detection method based on improved complementary ensemble empirical mode decomposition

  • 摘要: 钢丝绳小缺陷信号往往被淹没在股波噪声中,存在钢丝绳小缺陷检测困难、易漏检等问题。针对该问题,提出了一种基于改进完备集成经验模态分解(ICEEMD)的钢丝绳缺陷漏磁检测方法。为了避免钢丝绳表面润滑剂或尘埃对检测信号造成影响,采用电磁检测法。将ICEEMD、小波阈值滤波(WTF)、维纳滤波(WF)相结合,得到ICEEMD−WTF−WF多级降噪方法:通过ICEEMD分解钢丝绳漏磁信号,得到本征模态函数(IMF)分量;计算IMF分量的能量比、排列熵、互相关系数,取出IMF趋势分量和IMF股波噪声分量,并对股波噪声分量进行WTF,筛选有用的IMF分量重构信号;对重构后的信号进行WF,去除随机噪声。提取降噪后的缺陷特征值,输入BP神经网络并进行训练,识别钢丝绳缺陷漏磁信号。实验结果表明:ICEEMD−WTF−WF多级降噪方法对钢丝绳漏磁信号具有良好的降噪效果,信噪比、峭度指标优于WTF、移动平均滤波和WF;基于ICEEMD−WTF−WF的BP神经网络模型检测耗时短,对小缺陷的平均准判率达到98.13%,能较好地满足钢丝绳缺陷检测要求。
    Abstract: The signal of small defects in steel wire rope is often submerged in wave noise. Therefore, it is difficult to detect small defects in wire rope and easy to miss detection. In order to solve this problem, a steel wire rope defect magnetic flux leakage detection method based on improved complementary ensemble empirical mode decomposition (ICEEMD) is proposed. To avoid the influence of the lubricant or dust on the surface of the wire rope on the detection signal, the electromagnetic detection method is adopted. CEEMD-WTF-WF multi-stage noise reduction method is obtained by combining ICEEMD, wavelet threshold filtering (WTF) and Wiener filtering (WF). The intrinsic mode function (IMF) component is obtained by decomposing the magnetic flux leakage signal of steel wire rope through ICEEMD. The energy ratio, permutation entropy and cross-correlation coefficient of IMF components are calculated. The IMF trend component and IMF stock noise component are extracted. WTF is conducted on the stock noise component to filter the useful IMF component reconstruction signal. WF is applied to the reconstructed signal to remove random noise. The eigenvalues of the de-noised defects are extracted, input and trained by BP neural network. The magnetic flux leakage signals of the steel wire rope defects are identified. The experimental results show that ICEEMD-WTF-WF multi-stage noise reduction method has good noise reduction effect on the magnetic flux leakage signal of steel wire rope. The SNR and kurtosis indexes are better than those of WTF, moving average filter and WF. The BP neural network model based on ICEEMD-WTF-WF takes a short time to detect. The average accuracy rate of small defects reaches 98.13%, which can better meet the requirements of wire rope defect detection.
  • 图  1   钢丝绳缺陷漏磁检测系统

    Figure  1.   Magnetic flux leakage detection system for steel wire rope defects

    图  2   钢丝绳小缺陷漏磁信号

    Figure  2.   Magnetic leakage signal of small defects in steel wire rope

    图  3   IMF分量

    Figure  3.   IMF components

    图  4   IMF2分量降噪前的信号

    Figure  4.   IMF2 component signal before denoising

    图  5   IMF2分量降噪后的信号

    Figure  5.   IMF2 component signal after denoising

    图  6   钢丝绳缺陷漏磁信号

    Figure  6.   Magnetic flux leakage signal of steel wire rope defect

    图  7   基于ICEEMD−WTF−WF的误差收敛曲线

    Figure  7.   Error convergence curves based on ICEEMD−WTF−WF

    图  8   基于ICEEMD−WTF−WF和WTF的分类误差对比

    Figure  8.   Classification error comparison between ICEEMD−WTF−WF and WTF

    图  9   基于WF和移动平均滤波的分类误差对比

    Figure  9.   Classification error comparison between WF and moving average filtering

    表  1   各IMF分量的互相关系数、排列熵

    Table  1   The cross-correlation coefficient and permutation entropy of each IMF component

    IMF分量互相关系数排列熵IMF分量互相关系数排列熵
    IMF10.49470.9940IMF50.01720.5932
    IMF20.93130.9538IMF60.00240.4048
    IMF30.27730.8591IMF70.00480.4181
    IMF40.10580.6942IMF80.00660
    下载: 导出CSV

    表  2   各IMF分量所占的能量比

    Table  2   Energy ratio of each IMF component

    IMF分量能量值能量比/%IMF分量能量值能量比/%
    IMF11.75×1075.82IMF53.98×1050.13
    IMF22.58×10885.86IMF64.45×1050.15
    IMF31.95×1076.49IMF79.31×1040.03
    IMF44.34×1061.44IMF82.10×1050.07
    下载: 导出CSV

    表  3   不同滤波方法对比

    Table  3   Comparison of different filtering methods

    滤波方法信噪比互相关系数均方根误差峭度
    ICEEMD−WTF−WF20.1520.5263508.7484.240
    WTF19.5070.3728543.9059.205
    移动平均
    滤波
    8.4060.3065292.995.184
    WF11.6370.6771271.2820.063
    下载: 导出CSV

    表  4   训练样本数据(部分)

    Table  4   Training sample data (part)

    波峰值波谷值峰峰值波宽波形下
    面积
    波形
    能量
    0.47910.22930.31600.60000.43970.2847
    1.00000.01941.00000.16671.00000.2482
    0.86830.00000.92650.16670.98890.2468
    0.63000.02090.77070.46670.62290.5045
    0.55970.14260.67780.33330.55540.2376
    0.78380.01070.86990.20000.97740.2976
    0.58950.08440.71980.26670.63630.2288
    0.26410.64340.29130.93330.27050.2767
    0.55210.11830.49030.90000.57791.0000
    0.57000.15660.67840.53330.69190.7089
    0.44390.46510.47500.46670.43610.2014
    0.59350.05540.72750.60000.74430.8808
    0.55740.11020.67440.63330.68670.8025
    0.55680.11110.68850.70000.67710.9242
    0.64250.19920.70590.30000.69850.3022
    下载: 导出CSV

    表  5   基于4种滤波方法的小缺陷准判率对比

    Table  5   Comparison of small defect accuracy rate based on four filtering methods

    滤波方法检测
    时间/s
    特征
    数据/组
    测试
    数据/组
    检测正确
    组数
    准判
    率/%
    ICEEMD−WTF−WF0.223025815014798.00
    WTF0.244925815012885.33
    移动平均滤波0.217425815013288.00
    WF0.236325815010972.67
    下载: 导出CSV

    表  6   多组实验数据实验结果对比

    Table  6   Comparison of experimental results of multiple sets of experimental data %

    实验
    序号
    准判率
    ICEEMD−WTF−WFWTF移动平均滤波WF
    第1组97.3384.6766.6762.00
    第2组98.6788.6768.0061.33
    第3组100.0088.6779.3364.67
    第4组96.6784.0074.0062.00
    第5组98.0085.3388.0072.67
    平均值98.1382.2775.2064.53
    下载: 导出CSV
  • [1] 谢进,任文清. 煤矿钢丝绳芯输送带检测系统[J]. 工矿自动化,2021,47(增刊1):69-71.

    XIE Jin,REN Wenqing. Coal mine steel cord conveyor belt detection system[J]. Industry and Mine Automation,2021,47(S1):69-71.

    [2] 路正雄,郭卫,张传伟,等. 平行磁化NdFeB钢丝绳无损检测仪开发[J]. 西安科技大学学报,2021,41(1):139-144. DOI: 10.13800/j.cnki.xakjdxxb.2021.0118

    LU Zhengxiong,GUO Wei,ZHANG Chuanwei,et al. Development of a new wire rope non-destructive tester using parallely magnetized NdFeB[J]. Journal of Xi'an University of Science and Technology,2021,41(1):139-144. DOI: 10.13800/j.cnki.xakjdxxb.2021.0118

    [3] 田劼,宋姗. 改进粒子群优化小波阈值的矿用钢丝绳损伤信号处理方法研究[J]. 煤炭工程,2020,52(4):103-107.

    TIAN Jie,SONG Shan. Processing method for mine wire rope damage signal based on improved particle swarm optimization wavelet threshold[J]. Coal Engineering,2020,52(4):103-107.

    [4] 王红尧,吴佳奇,李长恒,等. 矿用钢丝绳损伤检测信号处理方法研究[J]. 工矿自动化,2021,47(2):58-62. DOI: 10.13272/j.issn.1671-251x.17677

    WANG Hongyao,WU Jiaqi,LI Changheng,et al. Research on signal processing method of mine wire rope damage detection[J]. Industry and Mine Automation,2021,47(2):58-62. DOI: 10.13272/j.issn.1671-251x.17677

    [5] 田劼,王洋洋,郭红飞,等. 基于漏磁检测的钢丝绳探伤原理与方法研究[J]. 煤炭工程,2021,53(9):95-100.

    TIAN Jie,WANG Yangyang,GUO Hongfei,et al. Principle and method of mine steel wire rope flaw detection based on magnetic flux detection[J]. Coal Engineering,2021,53(9):95-100.

    [6] 谢飞,张雪英,乔铁柱,等. 一种钢丝绳芯输送带早期故障检测方法[J]. 工矿自动化,2015,41(1):58-62. DOI: 10.13272/j.issn.1671-251x.2015.01.015

    XIE Fei,ZHANG Xueying,QIAO Tiezhu,et al. An early fault detection method of steel cord conveyor belt[J]. Industry and Mine Automation,2015,41(1):58-62. DOI: 10.13272/j.issn.1671-251x.2015.01.015

    [7] 李腾宇,寇子明,吴娟,等. 超千米深井提升机可视化监测系统应用[J]. 煤炭学报,2020,45(增刊2):1069-1078. DOI: 10.13225/j.cnki.jccs.zn20.0324

    LI Tengyu,KOU Ziming,WU Juan,et al. Monitoring system of the hoist in the over kilometer deep shaft[J]. Journal of China Coal Society,2020,45(S2):1069-1078. DOI: 10.13225/j.cnki.jccs.zn20.0324

    [8] 傅其凤,李松,路贵兰. 改进阈值去噪方法在电梯钢丝绳断丝检测中的应用[J]. 机床与液压,2019,47(15):194-196,138. DOI: 10.3969/j.issn.1001-3881.2019.15.041

    FU Qifeng,LI Song,LU Guilan. Application of improved threshold denoising method in broken steel wire inspection[J]. Machine Tool & Hydraulics,2019,47(15):194-196,138. DOI: 10.3969/j.issn.1001-3881.2019.15.041

    [9] 黄天然,谭建平,薛少华,等. EMD与排列熵在提升机跳绳故障诊断中的应用[J]. 传感器与微系统,2020,39(7):150-153,160. DOI: 10.13873/J.1000-9787(2020)07-0150-04

    HUANG Tianran,TAN Jianping,XUE Shaohua,et al. Application of EMD and permutation entropy in fault diagnosis of hoist wire jumping rope[J]. Transducer and Microsystem Technologies,2020,39(7):150-153,160. DOI: 10.13873/J.1000-9787(2020)07-0150-04

    [10] 杨智广,费鸿禄,胡刚. 隧道掘进爆破振动对围岩影响的HHT分析[J]. 中国安全生产科学技术,2019,15(9):121-127.

    YANG Zhiguang,FEI Honglu,HU Gang. HHT analysis on influence of blasting vibration during tunnel excavation on surrounding rock[J]. Journal of Safety Science and Technology,2019,15(9):121-127.

    [11]

    COLOMINAS M A,SCHLOTTHAUER G,TORRES M E. Improved complete ensemble EMD:a suitable tool for biomedical signal processing[J]. Biomedical Signal Processing and Control,2014,14:19-29. DOI: 10.1016/j.bspc.2014.06.009

    [12] 张丹威,王晓东,黄国勇. 相关系数SVD增强随机共振的单向阀故障诊断[J]. 电子学报,2018,46(11):2696-2704. DOI: 10.3969/j.issn.0372-2112.2018.11.017

    ZHANG Danwei,WANG Xiaodong,HUANG Guoyong. Check valve fault diagnosis with correlation coefficient SVD enhanced stochastic resonance[J]. Acta Electronica Sinica,2018,46(11):2696-2704. DOI: 10.3969/j.issn.0372-2112.2018.11.017

    [13] 宋洋,杨杰,宋锦焘,等. 基于CEEMDAN−PE−LSTM的混凝土坝变形预测[J]. 水利水运工程学报,2021(3):41-49. DOI: 10.12170/20200520003

    SONG Yang,YANG Jie,SONG Jintao,et al. Concrete dam deformation prediction based on CEEMDAN−PE−LSTM model[J]. Hydro-Science and Engineering,2021(3):41-49. DOI: 10.12170/20200520003

    [14] 张国安,何平,余焕伟,等. 基于广义延拓的电梯振动信号优化处理与分析[J]. 中国特种设备安全,2018,34(10):4-8,11. DOI: 10.3969/j.issn.1673-257X.2018.10.002

    ZHANG Guo'an,HE Ping,YU Huanwei,et al. Optimization and analysis of elevator vibration signal based on generalized extension method[J]. China Special Equipment Safety,2018,34(10):4-8,11. DOI: 10.3969/j.issn.1673-257X.2018.10.002

  • 期刊类型引用(3)

    1. 郭鑫,马行,穆春阳,张弘. 基于YOLOv8-SLA轻量化钢丝绳缺陷检测方法. 组合机床与自动化加工技术. 2025(03): 140-144 . 百度学术
    2. 田劼,白强,王兴军,孙钢钢,师彰文,李鹏博. 基于磁场模型的矿用钢丝绳检测信号特性试验研究. 煤炭科学技术. 2024(02): 279-291 . 百度学术
    3. 朱良,孙艺哲,谢波,刘艳蕊,井陆阳. 基于双树复小波包变换的钢丝绳断丝损伤信号特征信息提取研究. 仪表技术与传感器. 2023(05): 90-96 . 百度学术

    其他类型引用(3)

图(9)  /  表(6)
计量
  • 文章访问数:  158
  • HTML全文浏览量:  87
  • PDF下载量:  18
  • 被引次数: 6
出版历程
  • 收稿日期:  2022-02-19
  • 修回日期:  2022-07-07
  • 网络出版日期:  2022-05-18
  • 刊出日期:  2022-08-08

目录

    /

    返回文章
    返回