基于UWB的井下人员定位算法研究

Research on positioning algorithm of underground personnel based on UWB

  • 摘要: 针对井下高实时性、高精度的人员定位需求,研究了基于超宽带(UWB)的井下人员定位算法。采用双边双向测距(DS−TWR)方式测量定位基站与定位标签的距离,该方式不需要定位基站与定位标签系统时钟同步,从源头上提高了定位精度。根据测距信息,采用加权最小二乘(WLS)算法和CHAN两种位置解算算法估算定位标签的坐标,通过静态实验和动态实验对2种算法的性能进行对比分析,并通过均方根误差和误差累计分布函数(CDF)综合评估定位精度。实验结果表明:静态实验时,CHAN算法和WLS算法的均方根误差分别为5.878 6,8.007 4 cm,CHAN算法的均方根误差比WLS算法低26.59%;动态实验时,CHAN算法和WLS算法的均方根误差分别为12.292 3,21.180 9 cm,CHAN算法的均方根误差比WLS算法低41.97%;CHAN算法的定位精度高于WLS算法,更加适用于煤矿井下人员定位。

     

    Abstract: Aiming at the requirement of high real-time and high precision personnel positioning in underground mine, the positioning algorithm of underground personnel based on ultra wide band (UWB) is studied. The double-sided two-way ranging (DS-TWR) mode is adopted to measure the distance between the positioning base station and the positioning tag. This mode does not need the clock synchronization of the positioning base station and the positioning tag system. Therefore, the positioning precision is improved from the source. According to the ranging information, the weighted least squares (WLS) algorithm and CHAN algorithm are used to estimate the coordinates of the positioning tag. The performance of the two algorithms is compared and analyzed through static and dynamic experiments. The positioning precision is comprehensively evaluated through the root mean square error and the cumulative distribution function (CDF) of the error. The experimental results show that in static experiment, the root mean square errors of CHAN algorithm and WLS algorithm are 5.878 6 cm and 8.007 4 cm respectively. The root mean square error of CHAN algorithm is 26.59% lower than that of WLS algorithm. In dynamic experiment, the root mean square errors of CHAN algorithm and WLS algorithm are 12.2923 cm and 21.1809 cm respectively. The root mean square error of CHAN algorithm is 41.97% lower than that of WLS algorithm. The positioning precision of CHAN algorithm is higher than that of WLS algorithm. And CHAN algorithm is more suitable for underground personnel positioning in coal mines.

     

/

返回文章
返回