Abstract:
The magnetic flux leakage(MFL) detection method is the most widely used method for detecting the mine wire rope damage, and there is no research on the influence of magnetic noise signal in magnetic flux circuit on the MFL detection signal of wire rope damage. Based on the principle of MFL detection for wire rope damage, the equivalent magnetic circuit model of MFL detection is constructed, and the magnetic field distribution of the magnetic flux circuit is simulated by Ansoft Maxwell finite element software. The results show that there are many magnetic noise circuits in the magnetic flux circuit besides the main magnetic flux and the MFL of wire rope damage, which are easy to interfere with the MFL detection signal of wire rope. The MFL of armature magnetic conduction path and the coupling MFL between permanent magnets on both sides and air medium have the greatest influence. Based on the simulation results, the magnetic flux circuit is optimized. The contact part between the armature and the permanent magnet is changed from a right-angle structure to a rounded structure to reduce the MFL at this part, increase the main magnetic flux in the armature magnetic conduction path, and then enhance the MFL detection signal of wire rope damage. The annular magnetic bridge circuit shielding device is designed with high magnetic conductivity material and installed in the damage MFL detection area so as to guide the direction of the coupling MFL between the permanent magnets on both sides and the air medium, and reduce the influence of the coupling MFL on the detection of wire rope damage MFL. The experimental results show that after the optimization of the magnetic flux circuit, the characteristics of the wire rope damage detection signal are more obvious than those before the optimization, and the collected signal increases from 6.14 mV to 18.59 mV. It is verified that the optimization scheme can improve the transmission efficiency of the magnetic flux circuit, have the aggregation and enhancement effect on the damage MFL, and reduce the superposition effect of the permanent magnet-air coupling MFL and the wire rope damage MFL, which is conducive to improving the accuracy of wire rope damage detection.