矿用钢丝绳损伤检测磁通回路优化设计

田劼, 田壮, 郭红飞, 刘凝哲, 马建武

田劼,田壮,郭红飞,等. 矿用钢丝绳损伤检测磁通回路优化设计[J]. 工矿自动化,2022,48(3):118-122. DOI: 10.13272/j.issn.1671-251x.2021120013
引用本文: 田劼,田壮,郭红飞,等. 矿用钢丝绳损伤检测磁通回路优化设计[J]. 工矿自动化,2022,48(3):118-122. DOI: 10.13272/j.issn.1671-251x.2021120013
TIAN Jie, TIAN Zhuang, GUO Hongfei, et al. Optimization design of magnetic flux circuit for mine wire rope damage detection[J]. Journal of Mine Automation,2022,48(3):118-122. DOI: 10.13272/j.issn.1671-251x.2021120013
Citation: TIAN Jie, TIAN Zhuang, GUO Hongfei, et al. Optimization design of magnetic flux circuit for mine wire rope damage detection[J]. Journal of Mine Automation,2022,48(3):118-122. DOI: 10.13272/j.issn.1671-251x.2021120013

矿用钢丝绳损伤检测磁通回路优化设计

基金项目: 国家自然科学基金资助项目(51774293)。
详细信息
    作者简介:

    田劼 (1982-),女,山西太原人,副教授,博士,主要研究方向为钢丝绳无损检测,E-mail:tianj@cumtb.edu.cn

  • 中图分类号: TD532

Optimization design of magnetic flux circuit for mine wire rope damage detection

  • 摘要: 漏磁通检测法是应用最广泛的矿用钢丝绳损伤检测方法,目前未有考虑磁通回路中磁噪声信号对钢丝绳损伤漏磁通检测信号影响的研究。基于钢丝绳损伤漏磁通检测原理,构建了漏磁通检测等效磁路模型,采用Ansoft Maxwell有限元软件对磁通回路的磁场分布进行仿真,结果表明除主磁通和钢丝绳损伤漏磁通外,磁通回路中还存在多处磁噪声回路,易对钢丝绳损伤漏磁通检测信号造成干扰,其中衔铁导磁路径的漏磁通和两侧永磁体与空气介质之间耦合漏磁通的影响最大。基于仿真分析结果,对磁通回路进行了优化设计:将衔铁与永磁铁接触部位由直角结构改为圆角结构,以减小该部位的漏磁通,增大衔铁导磁路径中的主磁通,进而增强钢丝绳损伤漏磁通检测信号;采用高导磁材料设计环形磁桥路屏蔽装置并安装在损伤漏磁通检测区域,引导两侧永磁体与空气介质之间耦合漏磁通的走向,减小耦合漏磁通对钢丝绳损伤漏磁通检测的影响。实验结果表明,磁通回路经优化后,钢丝绳损伤检测信号特征较优化前更加明显,采集信号由6.14 mV增大至18.59 mV,验证了优化方案可提高磁通回路传递效率,对损伤漏磁通有聚合增强效果,减小了永磁体与空气介质之间耦合漏磁通与钢丝绳损伤漏磁通的叠加效应,有利于提高钢丝绳损伤检测准确性。
    Abstract: The magnetic flux leakage(MFL) detection method is the most widely used method for detecting the mine wire rope damage, and there is no research on the influence of magnetic noise signal in magnetic flux circuit on the MFL detection signal of wire rope damage. Based on the principle of MFL detection for wire rope damage, the equivalent magnetic circuit model of MFL detection is constructed, and the magnetic field distribution of the magnetic flux circuit is simulated by Ansoft Maxwell finite element software. The results show that there are many magnetic noise circuits in the magnetic flux circuit besides the main magnetic flux and the MFL of wire rope damage, which are easy to interfere with the MFL detection signal of wire rope. The MFL of armature magnetic conduction path and the coupling MFL between permanent magnets on both sides and air medium have the greatest influence. Based on the simulation results, the magnetic flux circuit is optimized. The contact part between the armature and the permanent magnet is changed from a right-angle structure to a rounded structure to reduce the MFL at this part, increase the main magnetic flux in the armature magnetic conduction path, and then enhance the MFL detection signal of wire rope damage. The annular magnetic bridge circuit shielding device is designed with high magnetic conductivity material and installed in the damage MFL detection area so as to guide the direction of the coupling MFL between the permanent magnets on both sides and the air medium, and reduce the influence of the coupling MFL on the detection of wire rope damage MFL. The experimental results show that after the optimization of the magnetic flux circuit, the characteristics of the wire rope damage detection signal are more obvious than those before the optimization, and the collected signal increases from 6.14 mV to 18.59 mV. It is verified that the optimization scheme can improve the transmission efficiency of the magnetic flux circuit, have the aggregation and enhancement effect on the damage MFL, and reduce the superposition effect of the permanent magnet-air coupling MFL and the wire rope damage MFL, which is conducive to improving the accuracy of wire rope damage detection.
  • 图  1   钢丝绳损伤漏磁通检测基本模型

    Figure  1.   Basic model of wire rope damage detection by magnetic flux leakage

    图  2   漏磁通检测等效磁路模型

    Figure  2.   Equivalent magnetic circuit model of magnetic flux leakage detection

    图  3   磁通回路的磁场分布

    Figure  3.   Magnetic field distribution of magnetic flux circuit

    图  4   衔铁导磁路径优化仿真模型

    Figure  4.   Simulation model of optimized armature magnetic path

    图  5   衔铁与永磁体接触部位轴向漏磁通分布

    Figure  5.   Radial magnetic flux leakage distribution at touching part of armature and permanent magnet

    图  6   磁桥路屏蔽装置及其安装

    Figure  6.   Magnetic bridge shielding equipment and its setting mode

    图  7   钢丝绳损伤检测磁密度云图

    Figure  7.   Magnetic density cloud map of wire rope damage detection

    图  8   钢丝绳损伤检测漏磁通分布

    Figure  8.   Magnetic flux leakage distribution of wire rope damage detection

    图  9   钢丝绳损伤检测实验平台

    Figure  9.   Experimental platform of wire rope damage detection

    图  10   钢丝绳损伤检测结果

    Figure  10.   Wire rope damage detection results

  • [1] 牟帅,陈志平,金嘉蕾,等. 钢丝绳无损检测技术研究进展[J]. 机电工程,2014,31(6):707-710.

    MOU Shuai,CHEN Zhiping,JIN Jialei,et al. Progress on nondestructive testing technology of wire ropes[J]. Journal of Mechanical & Electrical Engineering,2014,31(6):707-710.

    [2] 何吉坤. 矿用钢丝绳在线检测系统的研究与设计[D]. 西安: 西安科技大学, 2015.

    HE Jikun. Research and design of mining wire rope detection system[D]. Xi'an: Xi'an University of Science and Technology, 2015.

    [3]

    KALWA E,PIEKARSKI K. Fundamental of magnetic testing of steel rope[J]. NDT International,1989,22(1):36-43.

    [4] 张操,朱承建,刘健康. 基于漏磁原理的钢丝绳探伤仪影响因素研究[J]. 工矿自动化,2015,41(5):52-54.

    ZHANG Cao,ZHU Chengjian,LIU Jiankang. Research of impact factors of wire rope flaw detector based on principle of magnetic flux leakage[J]. Industry and Mine Automation,2015,41(5):52-54.

    [5] 康宜华,黎振捷,杨芸,等. 微小型钢丝绳漏磁检测传感器与仪器[J]. 无损检测,2014,36(5):11-15.

    KANG Yihua,LI Zhenjie,YANG Yun,et al. Mini-micro sensor & device for wire rope MFL testing[J]. Nondestructive Testing,2014,36(5):11-15.

    [6] 李登蓬,李国平,武博,等. 钢丝绳金属截面积损失型损伤检测传感器设计及仿真分析[J]. 济南大学学报(自然科学版),2019,33(1):37-41.

    LI Dengpeng,LI Guoping,WU Bo,et al. Design and simulation analysis of loss of metallic cross-sectional area detection sensor for wire ropes[J]. Journal of University of Jinan ( Science and Technology),2019,33(1):37-41.

    [7] 谢菲,孙燕华,姜宵园,等. 矿井提升钢丝绳在线漏磁无损检测装置[J]. 无损探伤,2019,43(1):34-36.

    XIE Fei,SUN Yanhua,JIANG Xiaoyuan,et al. On-line magnetic leakage nondestructive testing device for mine lifting wire rope[J]. Nondestructive Inspection,2019,43(1):34-36.

    [8] 王红尧,田劼. 基于有限元分析的矿用钢丝绳聚磁检测方法[J]. 煤炭学报,2013,38(增刊1):256-260.

    WANG Hongyao,TIAN Jie. Method of magnetic collect detection for coal mine wire rope base on finite element analysis[J]. Journal of China Coal Society,2013,38(S1):256-260.

    [9] 时统军,王朋,王博. 矿井提升机钢丝绳张力监测系统设计[J]. 工矿自动化,2014,40(6):103-105.

    SHI Tongjun,WANG Peng,WANG Bo. Design of wirerope tension monitoring system of mine hoist[J]. Industry and Mine Automation,2014,40(6):103-105.

    [10] 刘利伟,李建朝. 矿井提升机钢丝绳在线无损检测系统的设计及应用[J]. 工矿自动化,2012,38(1):90-92.

    LIU Liwei,LI Jianchao. Design of on-line nondestructive inspection system of steel rope of mine hoist and its application[J]. Industry and Mine Automation,2012,38(1):90-92.

    [11] 陶德馨,艾丽斯佳. 基于弱磁探伤的钢丝绳无损检测技术[J]. 中国工程机械学报,2009,7(1):96-99.

    TAO Dexin,AI Lisijia. Nondestructive testing technology for wire ropes based on weak magnetic flaw detection[J]. Chinese Journal of Construction Machinery,2009,7(1):96-99.

    [12] 陈征宇,叶玉龙. 基于ANSYS的电梯钢丝绳失效检测有限元分析[J]. 机电信息,2018(27):69-70. DOI: 10.3969/j.issn.1671-0797.2018.27.037

    CHEN Zhengyu,YE Yulong. Finite element analysis of elevator wire rope failure detection based on ANSYS[J]. Mechanical and Electrical Information,2018(27):69-70. DOI: 10.3969/j.issn.1671-0797.2018.27.037

    [13] 田劼,周俊莹,王红尧,等. 钢丝绳探伤多回路励磁检测方法研究[J]. 矿业科学学报,2018,3(2):180-185.

    TIAN Jie,ZHOU Junying,WANG Hongyao,et al. Research on multiloop magnetic detection method for steel wire rope detection[J]. Journal of Mining Science and Technology,2018,3(2):180-185.

    [14] 常用根,江帆,陈潇. 矿井提升装备健康状态监测系统设计[J]. 工矿自动化,2018,44(2):38-42.

    CHANG Yonggen,JIANG Fan,CHEN Xiao. Design of health condition monitoring system of mine hoisting equipment[J]. Industry and Mine Automation,2018,44(2):38-42.

    [15] 江念,王召巴,陈友兴,等. 电磁超声检测钢板厚度实验的参数优化[J]. 传感技术学报,2015,28(4):498-502. DOI: 10.3969/j.issn.1004-1699.2015.04.008

    JIANG Nian,WANG Zhaoba,CHEN Youxing,et al. The experiment parameters of the steel-sheet thickness measurement by electromagnetic ultrasonic[J]. Chinese Journal of Sensors and Actuators,2015,28(4):498-502. DOI: 10.3969/j.issn.1004-1699.2015.04.008

  • 期刊类型引用(32)

    1. 秦怡. 煤矿井下自动钻机集控技术应用研究. 矿山机械. 2025(01): 11-15 . 百度学术
    2. 丁华忠,张磊,杜雷,李庆明,周伟东,秦怡. 煤矿井下自动钻机集控系统设计. 煤矿机械. 2024(10): 30-32 . 百度学术
    3. 权富成,刘鹏. 基于模糊PI算法的矿山井下翻笼机操控系统. 煤炭技术. 2023(01): 238-240 . 百度学术
    4. 王雨. 矿山井下安全监控系统的研究与实现. 价值工程. 2023(03): 88-90 . 百度学术
    5. 荆诚,朱沙沙. 煤矿井下移动端应用融合框架的设计和应用. 煤炭技术. 2023(07): 184-186 . 百度学术
    6. 袁亮,薛生,郑晓亮,江丙友. 煤矿井下空气质量革命技术现状与展望. 工矿自动化. 2023(06): 32-40 . 本站查看
    7. 郭明明. 基于无线传感器网格的煤矿安全自动监控系统. 自动化与仪器仪表. 2022(02): 228-231 . 百度学术
    8. 薛中浩,崔丽珍. 基于鞋载惯导的PDR定位系统设计与实现. 内蒙古科技大学学报. 2022(01): 59-65 . 百度学术
    9. 李莉,曹红英. 基于物联网的输煤设备监测系统设计. 煤炭技术. 2022(04): 189-192 . 百度学术
    10. 任永珍. 基于物联网技术的饲料企业供应链信息服务平台构建. 饲料研究. 2022(06): 131-134 . 百度学术
    11. 陈杰. 智慧矿山安全防控多系统井下融合与应急联动技术研究. 煤矿安全. 2022(05): 99-105 . 百度学术
    12. 陈杰. 智慧矿山多系统传感层设备融合关键技术. 煤矿安全. 2022(07): 119-125 . 百度学术
    13. 王佳琦. 解析物联网技术与煤矿安全监测信息平台的融合. 内蒙古煤炭经济. 2022(07): 91-93 . 百度学术
    14. 李国民,章鳌,贺耀宜,高文,黄综浏. 智能矿井多元监控数据集成关键技术研究. 工矿自动化. 2022(08): 127-130+146 . 本站查看
    15. 凌君谊. 基于物联网的船舶智能远程监控系统设计. 中国修船. 2022(05): 43-46 . 百度学术
    16. 张辰宇. 基于5G通信技术的矿井开采工作面环境监测系统. 能源与环保. 2022(11): 220-225 . 百度学术
    17. 贺耀宜,高文,杨耀,荆诚,朱沙沙,陈醒. 智能矿山多元监控信息融合与联动研究. 工矿自动化. 2022(11): 11-19 . 本站查看
    18. 荆诚,刘丽静,陈醒,周朴凡. 面向对象的设备建模方法及其应用. 工矿自动化. 2021(04): 113-115+120 . 本站查看
    19. 刘涛,何斌. 基于物联网的电梯运行数据在线监测系统设计. 自动化技术与应用. 2021(05): 100-104 . 百度学术
    20. 贺耀宜,刘丽静,赵立厂,周李兵. 基于工业物联网的智能矿山基础信息采集关键技术与平台. 工矿自动化. 2021(06): 17-24 . 本站查看
    21. 胡宏泽,杜志刚,储楠,罗克. 基于智慧矿山平台的人员定位系统关键技术. 煤矿安全. 2021(11): 134-138 . 百度学术
    22. 李兵元,李恺,吴斌,丁煜晖. 油气生产物联网系统建设分析. 中国管理信息化. 2020(03): 102-105 . 百度学术
    23. 郭秀才,张悦,贺耀宜. 负载均衡算法在智慧矿山软件平台中的应用. 工矿自动化. 2020(05): 104-107+112 . 本站查看
    24. 尹瑞光. 基于物联网的煤矿综合自动化控制系统. 电子技术与软件工程. 2020(08): 108-109 . 百度学术
    25. 朱晶. 基于物联网技术的煤矿安全监控平台的设计与关键技术. 机械管理开发. 2020(07): 239-241 . 百度学术
    26. 于林. 基于物联网的可融合性煤矿监控系统研究. 内蒙古煤炭经济. 2020(05): 160 . 百度学术
    27. 刘艳,陈滢生. 基于物联网的智慧教室设计方案评价研究. 现代电子技术. 2020(19): 163-166 . 百度学术
    28. 史雷特. 基于物联网的医疗远程监控系统设计与实现. 信息技术. 2020(10): 166-170 . 百度学术
    29. 胡文涛,卓敏敏,赵立厂,张晓光. 一种智慧矿山信息交互方法. 工矿自动化. 2020(10): 55-60 . 本站查看
    30. 朱晓洁,张明杰. 井下多系统融合分站设计. 煤矿机械. 2019(12): 189-192 . 百度学术
    31. 张阳,杜志文. 边缘计算在采煤机控制系统中的应用. 工矿自动化. 2019(12): 75-80 . 本站查看
    32. 徐丽平,赵亮. 矿用设备开停传感器自学习工作方法. 煤炭与化工. 2019(11): 83-84+89 . 百度学术

    其他类型引用(12)

图(10)
计量
  • 文章访问数:  293
  • HTML全文浏览量:  113
  • PDF下载量:  28
  • 被引次数: 44
出版历程
  • 收稿日期:  2021-12-02
  • 修回日期:  2022-03-05
  • 网络出版日期:  2022-03-04
  • 刊出日期:  2022-03-25

目录

    /

    返回文章
    返回