煤矿副井矿车装载物智能识别方法

Intelligent identification method for mine car load in coal mine auxiliary shaft

  • 摘要: 基于卷积神经网络实现煤矿副井矿车装载物自动分类在实际应用中因触发条件简易导致误判与漏判情况,且非矿车物体经过检测区域时会引起司控道岔误动作。针对该问题,提出了基于目标检测模型的煤矿副井矿车装载物智能识别方法。在煤矿副井井口安装工业相机采集矿车装载物图像并进行人工标注,构建矿车识别数据集,对Faster R−CNN,YOLOv4,SSD 3种目标检测模型的识别准确率与实时性进行评估,根据评估结果,得出YOLOv4模型更适用于矿车装载物识别任务的结论;为降低模型大小,提高识别速度,对YOLOv4模型进行改进,采用轻量级网络MobileNet替换原有主干特征提取网络CSPDarknet53,构建MobileNetv3−YOLOv4模型,测试结果表明MobileNetv3−YOLOv4模型的平均精度均值(mAP)为95.03%,识别速度为44 帧/s,较YOLOv4模型分别提高了0.77%,27 帧/s;为方便现场应用和部署,提高矿车装载物识别模型在嵌入式平台上的性能,提出了基于层间融合和模型量化的模型加速方法,并将加速前后的MobileNetv3−YOLOv4模型移植到Jetson TX2进行矿车装载物识别现场试验,结果表明识别速度由MobileNetv3−YOLOv4模型加速前的18.3 帧/s提升至35.42 帧/s,mAP为94.68%,满足现场实时、精确检测需求,且仅在矿车经过检测区域时启动检测任务,避免了因其他物体引起的司控道岔误动作现象。

     

    Abstract: The automatic classification of mine car load based on convolution neural network in coal mine auxiliary shaft is realized in practical application. The misdetection and false alarm are caused by simple trigger conditions. Non-mine car objects passing through the detection area can cause the misoperation of driver controlled switch. In order to solve this problem, an intelligent identification method for mine car load in coal mine auxiliary shaft based on target detection model is proposed. An industrial camera is installed at the wellhead of a coal mine auxiliary shaft to collect the images of mine car load and the images are manually labeled so as to construct a mine car identification data set. And the identification accuracy and the real-time performance of three target detection models, namely Faster R-CNN, YOLOv4 and SSD are evaluated. According to the evaluation results, it is concluded that the YOLOv4 model is more suitable for the identification task of mine car load. In order to reduce the model size and improve the identification speed, the YOLOv4 model is improved. The lightweight network MobileNet is used to replace the original backbone characteristic extraction network CSPDarknet53. So the MobileNetv3-YOLOv4 model is constructed. The test results show that the mean average precision(mAP) of the MobileNetv3-YOLOv4 model is 95.03%, and the identification speed is 44 frames/s, which is 0.77% and 27 frames/s higher than that of the YOLOv4 model respectively. In order to facilitate field application and deployment and improve the performance of the mine car load identification model on the embedded platform, a model acceleration method based on inter-layer fusion and model quantization is proposed. The MobileNetv3-YOLOv4 model before and after the acceleration is transplanted to Jetson TX2 for field test of mine car load identification. The results show that the identification speed is increased from 18.3 frames/s before the acceleration of the MobileNetv3-YOLOv4 model to 35.42 frames/s, and the mAP is 94.68%, which meets the real-time and precise detection requirements in the field. And the detection task is only started when the mine car passes the detection area, which avoids the misoperation of driver controlled switch caused by other objects.

     

/

返回文章
返回