基于自适应双通道先验的煤矿井下图像去雾算法

王媛彬, 韦思雄, 段誉, 吴华英

王媛彬,韦思雄,段誉,等. 基于自适应双通道先验的煤矿井下图像去雾算法[J]. 工矿自动化,2022,48(5):46-51, 84. DOI: 10.13272/j.issn.1671-251x.2021110053
引用本文: 王媛彬,韦思雄,段誉,等. 基于自适应双通道先验的煤矿井下图像去雾算法[J]. 工矿自动化,2022,48(5):46-51, 84. DOI: 10.13272/j.issn.1671-251x.2021110053
WANG Yuanbin, WEI Sixiong, DUAN Yu, et al. Defogging algorithm of underground coal mine image based on adaptive dual-channel prior[J]. Journal of Mine Automation,2022,48(5):46-51, 84. DOI: 10.13272/j.issn.1671-251x.2021110053
Citation: WANG Yuanbin, WEI Sixiong, DUAN Yu, et al. Defogging algorithm of underground coal mine image based on adaptive dual-channel prior[J]. Journal of Mine Automation,2022,48(5):46-51, 84. DOI: 10.13272/j.issn.1671-251x.2021110053

基于自适应双通道先验的煤矿井下图像去雾算法

基金项目: 国家自然科学基金面上项目(52174198)。
详细信息
    作者简介:

    王媛彬(1977-),女,河南平顶山人,副教授,博士,主要研究方向为煤矿井下视频监控与装备监测,E-mail:wangyb998@163.com

  • 中图分类号: TD67

Defogging algorithm of underground coal mine image based on adaptive dual-channel prior

  • 摘要: 针对暗通道先验算法在处理煤矿井下图像时存在的图像失真、细节不足和图像暗光等问题,提出了一种基于自适应双通道先验的煤矿井下图像去雾算法。首先,根据大气散射物理模型与煤矿井下特殊环境,建立了煤矿井下尘雾图像退化模型。然后,融合暗通道与亮通道建立双通道先验模型来优化透射率,并加入自适应权重系数来提高透射率图的精度,采用梯度导向滤波代替传统导向滤波对透射率图进行细化处理。最后,结合矿井环境改进大气光值求取方法,根据尘雾图像退化模型复原图像。实验结果表明:该算法能够有效去除图像中的尘雾现象,避免了光晕模糊和过增强现象;相较于暗通道先验算法、Retinex算法、Tarel算法,该算法大幅提升了图像信息熵与平均梯度,使复原后图像的细节信息更加丰富,同时缩短了运行时间。
    Abstract: When dark channel prior algorithm is used to deal with underground coal mine images, there are problems of image distortion, lack of details and dark light. In order to solve the above problems, a defogging algorithm of underground coal mine image based on adaptive dual-channel prior is proposed. Firstly, according to the physical model of atmospheric scattering and the special environment of underground coal mine, the dust and fog image degradation model in underground coal mine is established. Secondly, a dual-channel prior model is established by fusing the dark channel and the bright channel to optimize the transmittance. An adaptive weight coefficient is added to improve the precision of the transmittance image. And the gradient guided filtering is adopted to replace the traditional guided filtering to refine the transmittance image. Finally, combined with the mine environment, the atmospheric light value calculation method is improved. And the image is restored according to the dust and fog image degradation model. The experimental results show that the algorithm can effectively remove the fog phenomenon in the image, avoid the halo blur and over-enhancement phenomenon. Compared with dark channel prior algorithm, Retinex algorithm and Tarel algorithm, this algorithm greatly improves the image information entropy and average gradient. The algorithm enriches the detailed information of the restored image and shortens the running time.
  • 图  1   基于自适应双通道先验的煤矿井下图像去雾算法流程

    Figure  1.   Flow of defogging algorithm for underground coal mine image based on adaptive dual-channel prior

    图  2   不同算法求出的透射率图对比

    Figure  2.   Comparison of transmittance graphs obtained by different algorithms

    图  3   不同算法得到的煤矿井下图像去雾结果对比

    Figure  3.   Comparison of image defogging results of underground coal mine obtained by different algorithms

    表  1   不同算法去雾图像指标比较

    Table  1   Indicators comparison of defogging images processed by different algorithms

    图像评价指标本文算法暗通道先验算法Retinex算法Tarel算法
    图像1信息熵7.196.587.416.92
    标准差46.8834.3547.6335.12
    平均梯度0.13420.05760.09690.0781
    图像2信息熵7.346.697.487.00
    标准差48.9635.7748.5237.46
    平均梯度0.10710.04870.09610.0682
    图像3信息熵7.476.807.587.09
    标准差43.9434.3146.9836.13
    平均梯度0.09060.04490.07700.0531
    图像4信息熵7.056.367.466.81
    标准差53.6936.9747.4832.11
    平均梯度0.06700.03130.07570.0550
    图像5信息熵7.347.557.697.42
    标准差58.7356.3958.6357.51
    平均梯度0.07340.03570.06330.0362
    下载: 导出CSV

    表  2   不同算法运行时间比较

    Table  2   Comparison of running time of different algorithms s

    图像本文算法暗通道先验算法Retinex算法Tarel算法
    图像13.686.751.34379
    图像23.386.851.35283
    图像32.186.581.36316
    图像42.596.691.32293
    图像55.688.212.56386
    下载: 导出CSV
  • [1] 范伟强,刘毅. 基于自适应小波变换的煤矿降质图像模糊增强算法[J]. 煤炭学报,2020,45(12):4248-4260.

    FAN Weiqiang,LIU Yi. Fuzzy enhancement algorithm of coal mine degradation image based on adaptive wavelet transform[J]. Journal of China Coal Society,2020,45(12):4248-4260.

    [2] 郭瑞,党建武,沈瑜,等. 改进的单尺度Retinex图像去雾算法[J]. 兰州交通大学学报,2018,37(6):69-75. DOI: 10.3969/j.issn.1001-4373.2018.06.011

    GUO Rui,DANG Jianwu,SHEN Yu,et al. Fog removal algorithm of improved single scale Retinex image[J]. Journal of Lanzhou Jiaotong University,2018,37(6):69-75. DOI: 10.3969/j.issn.1001-4373.2018.06.011

    [3] 龚云,杨庞彬,颉昕宇. 结合同态滤波与直方图均衡化的井下图像匹配算法[J]. 工矿自动化,2021,47(10):37-41.

    GONG Yun,YANG Pangbin,JIE Xinyu. Underground image matching algorithm combining homomorphic filtering and histogram equalization[J]. Industry and Mine Automation,2021,47(10):37-41.

    [4] 刘晓阳,乔通,乔智. 基于双边滤波和Retinex算法的矿井图像增强方法[J]. 工矿自动化,2017,43(2):49-45.

    LIU Xiaoyang,QIAO Tong,QIAO Zhi. Image enhancement method of mine based on bilateral filtering and Retinex algorithm[J]. Industry and Mine Automation,2017,43(2):49-45.

    [5] 智宁,毛善君,李梅. 基于照度调整的矿井非均匀照度视频图像增强算法[J]. 煤炭学报,2017,42(8):2190-2197.

    ZHI Ning,MAO Shanjun,LI Mei. Enhancement algorithm based on illumination adjustment for nonuniform illuminance video images in coal mine[J]. Journal of China Coal Society,2017,42(8):2190-2197.

    [6]

    HE Kaiming,SUN Jian,TANG Xiao'ou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(12):2341-2353. DOI: 10.1109/TPAMI.2010.168

    [7] 王启明,李季. 煤矿井下高清图像快速去雾算法研究[J]. 小型微型计算机系统,2018,39(11):2557-2560. DOI: 10.3969/j.issn.1000-1220.2018.11.038

    WANG Qiming,LI Ji. Study on fast haze removal algorithm for underground high definition image[J]. Journal of Chinese Computer Systems,2018,39(11):2557-2560. DOI: 10.3969/j.issn.1000-1220.2018.11.038

    [8] 杜明本,陈立潮,潘理虎. 基于暗原色理论和自适应双边滤波的煤矿尘雾图像增强算法[J]. 计算机应用,2015,35(5):1435-1438,1448. DOI: 10.11772/j.issn.1001-9081.2015.05.1435

    DU Mingben,CHEN Lichao,PAN Lihu. Enhancement algorithm for fog and dust images in coal mine based on dark channel prior theory and bilateral adaptive filter[J]. Journal of Computer Applications,2015,35(5):1435-1438,1448. DOI: 10.11772/j.issn.1001-9081.2015.05.1435

    [9]

    NARASIMHAN S G,NAYAR K. Vision and the atmosphere[J]. International Journal of Computer Vision,2002,48(3):233-254. DOI: 10.1023/A:1016328200723

    [10]

    XU Yueshu, GUO Xiaoqiang, WANG Haiying, et al. Single image haze removal using light and dark channel prior[C]//2016 IEEE/CIC International Conference on Communications in China (ICCC), Piscataway, 2016: 1-6.

    [11] 蒯峰阳,张丹. 基于亮暗通道相结合的自适应图像去雾算法[J]. 计算技术与自动化,2021,40(2):118-124.

    KUAI Fengyang,ZHANG Dan. Adaptive single image haze removal using integrated dark and bright channel prior[J]. Computing Technology and Automation,2021,40(2):118-124.

    [12]

    HE Kaiming,SUN Jian,TANG Xiao'ou. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(6):1397-1409. DOI: 10.1109/TPAMI.2012.213

    [13]

    YU Teng,SONG Kang,MIAO Pu,et al. Nighttime single image dehazing via pixel-wise alpha blending[J]. IEEE Access,2019,7:114619-114630. DOI: 10.1109/ACCESS.2019.2936049

    [14] 张谢华,张申,方帅,等. 煤矿智能视频监控中雾尘图像的清晰化研究[J]. 煤炭学报,2014,39(1):198-204.

    ZHANG Xiehua,ZHANG Shen,FANG Shuai,et al. Clearing research on fog and dust images in coalmine intelligent video surveillance[J]. Journal of China Coal Society,2014,39(1):198-204.

    [15]

    KOU Fei,CHEN Weihai,WEN Changyun,et al. Gradient domain guided image filtering[J]. IEEE Transactions on Image Processing,2015,24(11):4528-4539. DOI: 10.1109/TIP.2015.2468183

    [16] 刘晓文,仲亚丽,袁莎莎,等. 基于暗原色先验的煤矿井下退化图像复原算法[J]. 煤炭科学技术,2012,40(6):77-80.

    LIU Xiaowen,ZHONG Yali,YUAN Shasha,et al. Restoration algorithms of degradation image in underground mine based on dark channel prior[J]. Coal Science and Technology,2012,40(6):77-80.

    [17] 张英俊,雷耀花,潘理虎. 基于暗原色先验的煤矿井下图像增强技术[J]. 工矿自动化,2015,41(3):80-83.

    ZHANG Yingjun,LEI Yaohua,PAN Lihu. Enhancement technique of underground image based on dark channel prior[J]. Industry and Mine Automation,2015,41(3):80-83.

图(3)  /  表(2)
计量
  • 文章访问数:  483
  • HTML全文浏览量:  132
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-19
  • 修回日期:  2022-04-27
  • 网络出版日期:  2022-03-14
  • 刊出日期:  2022-05-26

目录

    /

    返回文章
    返回