煤矸石分拣机器人动态目标稳定抓取轨迹规划

马宏伟, 孙那新, 张烨, 王鹏, 曹现刚, 夏晶

马宏伟,孙那新,张烨,等. 煤矸石分拣机器人动态目标稳定抓取轨迹规划[J]. 工矿自动化,2022,48(4):20-30. DOI: 10.13272/j.issn.1671-251x.2021110050
引用本文: 马宏伟,孙那新,张烨,等. 煤矸石分拣机器人动态目标稳定抓取轨迹规划[J]. 工矿自动化,2022,48(4):20-30. DOI: 10.13272/j.issn.1671-251x.2021110050
MA Hongwei, SUN Naxin, ZHANG Ye, et al. Track planning of coal gangue sorting robot for dynamic target stable grasping[J]. Journal of Mine Automation,2022,48(4):20-30. DOI: 10.13272/j.issn.1671-251x.2021110050
Citation: MA Hongwei, SUN Naxin, ZHANG Ye, et al. Track planning of coal gangue sorting robot for dynamic target stable grasping[J]. Journal of Mine Automation,2022,48(4):20-30. DOI: 10.13272/j.issn.1671-251x.2021110050

煤矸石分拣机器人动态目标稳定抓取轨迹规划

基金项目: 国家自然科学基金面上项目(51975468);国家自然科学基金项目(51705412)。
详细信息
    作者简介:

    马宏伟(1957-),男,陕西兴平人,教授,研究方向为智能检测与控制、工业机器人及机电一体化、煤矿机电设备及其自动化、智能化等,E-mail:mahw@xust.edu.cn

    通讯作者:

    孙那新(1997-),女,陕西蓝田人,硕士研究生,主要研究方向为机器人视觉伺服控制与轨迹规划,E-mail:1456282619@qq.com

  • 中图分类号: TD713

Track planning of coal gangue sorting robot for dynamic target stable grasping

  • 摘要: 针对机器人分拣煤矸石时,因输送带打滑、左右摆动而造成矸石定位不准确、机械臂末端抓取失败和载荷冲击等问题,提出了一种基于机器视觉的煤矸石分拣机器人动态目标稳定抓取轨迹规划方法。首先,采用基于HU不变矩图像匹配算法对目标矸石进行匹配识别并获取目标矸石位姿;其次,分别建立机器人和相机−机器人运动学方程,并进行正逆求解,实现基于视觉的目标矸石精确定位;最后,采用位置−速度−加速度三环PID控制算法进行目标矸石动态跟踪,即位置环控制器的输入为获取的目标矸石精确位置,位置环控制器的输出作为速度环控制器的输入,速度环控制器的输出作为加速度环控制器的输入,将加速度环控制器的输出叠加到伺服电动机上,使机械臂末端与目标矸石达到位置、速度同步运动的效果,实现平稳快速抓取。采用Matlab对三环PID控制算法、三维比例导引算法和三维偏置比例导引算法进行仿真对比,结果表明:对动态目标的跟踪抓取在追随式、同步式和拦截式3种情况下,三环PID控制算法的响应时间、跟踪抓取时间均较比例导引算法及偏置比例导引算法短,且三环PID控制算法在整个过程中各轴速度、加速度连续、平滑,没有出现突变情况,可实现动态目标同步跟踪、精准抓取。在煤矸石分拣系统平台上应用三环PID控制算法、比例导引算法和偏置比例导引算法进行适应性实验,结果表明:3种算法在机器人运行时各个关节均未超限;三环PID控制算法完成抓取的平均时间比比例导引算法和偏置比例导引算法短;三环PID控制算法在抓取点的平均速度偏差在1 mm/s左右,跟踪速度偏差较小,可满足对高速度目标的同步跟踪、精准抓取要求。
    Abstract: When the robot is used to sort coal gangue, in order to solve the problems such as inaccurate positioning of gangue, failure of grasping by end of the manipulator and load impact caused by slippage and left-right swing of belt conveyor, a track planning method of coal gangue sorting robot for dynamic target stable grasping based on machine vision is proposed. Firstly, the target gangue is identified and the pose of the target gangue is obtained by using the HU moment invariants image matching algorithm. Secondly, the kinematic equations of the robot and the camera-robot are established respectively, and the forward and inverse solutions are carried out to realize the accurate positioning of the target gangue based on vision. Finally, the position-velocity-acceleration three-loop PID control algorithm is used to dynamically track the target gangue. The input of the position loop controller is the obtained precise position of the target gangue, the output of the position loop controller is used as the input of the velocity loop controller, the output of the velocity loop controller is used as the input of the acceleration loop controller, and the output of the acceleration loop controller is superimposed on the servo motor. Therefore, the end of the manipulator and the target gangue can achieve the effect of synchronous movement of position and velocity, so as to achieve stable and fast grasping. Matlab is used to compare the three-loop PID control algorithm, the three-dimensional proportional navigation algorithm and the three-dimensional biased proportional navigation algorithm. The results show that in the following, synchronous and intercepting cases of the tracking and grasping of dynamic targets, the response time and tracking and grasping time of the three-loop PID control algorithm are better than those of the proportional navigation algorithm and the biased proportional navigation algorithm. And the three-loop PID control algorithm is continuous and smooth in the speed and acceleration of each axis in the whole process without sudden change, which can realize synchronous tracking of dynamic targets and precise grasping. The three-loop PID control algorithm, proportional navigation algorithm and biased proportional navigation algorithm are applied to the coal gangue sorting system platform to carry out adaptability experiments. The results show that the three algorithms do not exceed the limit of each joint during robot operation. The average time of the three-loop PID control algorithm to complete the grasping is shorter than those of the proportional navigation algorithm and the biased proportional navigation algorithm. The average speed error of the three-loop PID control algorithm at the grasping point is about 1 mm/s, and the tracking speed error is small, which can meet the requirements of synchronous tracking and precise grasping of high-speed targets.
  • 图  1   煤矸石分拣机器人系统组成

    Figure  1.   Composition of coal gangue sorting robot system

    图  2   动态目标稳定抓取轨迹控制流程

    Figure  2.   Dynamic target stable grasping track control process

    图  3   基于HU不变矩的动态目标匹配流程

    Figure  3.   Flow chart of dynamic target matching based on HU moment invariants

    图  4   目标矸石匹配结果

    Figure  4.   Target gangue matching results

    图  5   煤矸石分拣机器人运动学坐标系模型

    Figure  5.   Kinematics coordinate system model of coal gangue sorting robot

    图  6   坐标系转换关系

    Figure  6.   Coordinate system transformation diagram

    图  7   追随式3种算法动态目标轨迹规划曲线

    Figure  7.   Dynamic target track planning curves of three algorithms under following track planning mode

    图  8   追随式3种算法X轴向位置、速度、加速度变化曲线

    Figure  8.   X axial position, velocity and acceleration curves of three algorithms under following track planning mode

    图  9   追随式3种算法Y轴向位置、速度、加速度变化曲线

    Figure  9.   Y axial position, velocity and acceleration curves of three algorithms under following track planning mode

    图  10   追随式3种算法Z轴向位置、速度、加速度变化曲线

    Figure  10.   Z axial position, velocity and acceleration curves of three algorithms under following track planning mode

    图  11   同步式3种算法动态目标轨迹规划曲线

    Figure  11.   Dynamic target track planning curves of three algorithms under synchronous track planning mode

    图  12   同步式3种算法X轴向位置、速度、加速度变化曲线

    Figure  12.   X axial position, velocity and acceleration curves of three algorithms under synchronous track planning mode

    图  13   同步式3种算法Y轴向位置、速度、加速度变化曲线

    Figure  13.   Y axial position, velocity and acceleration curves of three algorithms under synchronous track planning mode

    图  14   同步式3种算法Z轴向位置、速度、加速度变化曲线

    Figure  14.   Z axial position, velocity and acceleration curves of three algorithms under synchronous track planning mode

    图  15   拦截式3种算法动态目标轨迹规划曲线

    Figure  15.   Dynamic target track planning  curves of three algorithms under intercepting track planning mode

    图  16   拦截式3种算法X轴向位置、速度、加速度变化曲线

    Figure  16.   X axial position, velocity and acceleration curves of three algorithms under intercepting track planning mode

    图  17   拦截式3种算法Y轴向位置、速度、加速度变化曲线

    Figure  17.   Y axial position, velocity and acceleration curves of three algorithms under intercepting track planning mode

    图  18   拦截式3种算法Z轴向位置、速度、加速度变化曲线

    Figure  18.   Z axial position, velocity and acceleration curves of three algorithms under intercepting track planning mode

    图  19   煤矸石分拣机器人实验平台

    Figure  19.   Experimental platform of coal gangue sorting robot

    表  1   煤矸石分拣机器人运动结构参数

    Table  1   Motion structure parameters of coal gangue sorting robot

    转换矩阵运动结构参数
    ${{\boldsymbol{M}}}_{1}^{{\rm{W}}}$α1l1d1θ1
    ${{\boldsymbol{M}}}_{2}^{1}$α2l2d2θ2
    ${{\boldsymbol{M}}}_{{\rm{E}}}^{2}$α3l3d3θ3
    下载: 导出CSV

    表  2   3种算法运动仿真参数

    Table  2   3 kinds of algorithm motion simulation parameters

    轨迹规划算法初始速度
    /(m·s−1)
    加速度
    /(m·s−2)
    加速时间
    /s
    偏置比例导引0100.3
    比例导引0100.3
    三环PID控制0
    下载: 导出CSV

    表  3   3种算法实验结果

    Table  3   Experimental results of three algorithms

    (∆X,∆Y,∆Z)/m
    v
    /(m·s−1)
    tPID
    /s
    tB
    /s
    tP
    /s
    ESPID
    /mm
    ESB
    /mm
    ESP
    /mm
    EVPID

    /(m·s−1)
    EVB
    /(m·s−1)
    EVP
    /(m·s−1)
    (0.5,0.5,0.4)0.90.4250.5430.5561.180.920.820.001 52.1012.113
    1.00.4690.5640.5641.011.031.130.001 22.0032.011
    1.10.4860.5880.5940.921.150.870.000 91.9041.910
    (0,0.5,0.4)0.90.3010.3960.4261.111.030.850.000 42.1062.101
    1.00.3020.4040.4501.041.311.160.000 62.0102.004
    1.10.3100.4140.4650.941.031.070.001 11.9161.905
    (−0.5,0.5,0.4)0.90.3030.3720.4271.210.901.190.001 32.1152.102
    1.00.3080.3690.4561.061.031.100.000 92.0132.009
    1.10.3110.3670.4921.040.920.970.001 41.9071.913
    下载: 导出CSV
  • [1] 尹建平. 平朔矿区煤矸石山生态修复模式[J]. 露天采矿技术,2021,36(4):87-88.

    YIN Jianping. Ecological restoration model of coal gangue dump in Pingshuo mining area[J]. Opencat Mining Technology,2021,36(4):87-88.

    [2] 董增澳,李萍,贾一雪,等. 煤矸石综合利用与资源化处理研究进展[J]. 环境保护前沿,2021,11(2):363-371. DOI: 10.12677/AEP.2021.112040

    DONG Zeng'ao,LI Ping,JIA Yixue,et al. Research progress on comprehensive utilization and resourceful treatment of coal gangue[J]. Advances in Environmental Protection,2021,11(2):363-371. DOI: 10.12677/AEP.2021.112040

    [3] 李宁. 煤矸分拣机器人控制系统研究[D]. 西安: 西安科技大学, 2019.

    LI Ning. Study on the control system of coal mine sorting robots[D]. Xi'an: Xi'an University of Science and Technology, 2019.

    [4] 曹亦俊,刘敏,邢耀文,等. 煤矿井下选煤技术现状和展望[J]. 采矿与安全工程学报,2020,37(1):192-201.

    CAO Yijun,LIU Min,XING Yaowen,et al. Current situation and prospect of underground coal preparation technology[J]. Journal of Mining & Safety Engineering,2020,37(1):192-201.

    [5] 费佳浩. 煤矸分拣机器人结构设计及运动分析[D]. 西安: 西安科技大学, 2019.

    FEI Jiahao. Structure design and motion analysis of coal gangue sorting robot[D]. Xi'an: Xi'an University of Science and Technology, 2019.

    [6]

    CROFT E. A,FENTON R. G,BENHABIB B. Optimal rendezvous-point selection for robotic interception of moving objects[J]. IEEE Tranactions on Systems,Man,and Cybernetics,1998,28(2):192-204.

    [7]

    ZHANG Zhengyou. Camera calibration with one-dimensional objects[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(7):892-899. DOI: 10.1109/TPAMI.2004.21

    [8] 张朝阳,周惠兴,曹荣敏,等. 基于金字塔形寻优的传送带动态抓取研究[J]. 制造业自动化,2015,37(9):92-95. DOI: 10.3969/j.issn.1009-0134.2015.09.026

    ZHANG Chaoyang,ZHOU Huixing,CAO Rongmin,et al. Research on dynamic conveyor grasping with pyramid search algorithm[J]. Manufacturing Automation,2015,37(9):92-95. DOI: 10.3969/j.issn.1009-0134.2015.09.026

    [9]

    LIN Yunhan,MIN Huasong,ZHOU Haotian,et al. A human-robot-environment interactive reasoning mechanism for object sorting robot[J]. IEEE Transactions on Cognitive & Developmental,2018,10(3):611-623.

    [10] 刘子龙. 基于机器视觉的快速分拣食品包装系统研究[D]. 杭州: 浙江工业大学, 2015.

    LIU Zilong. The research quick sorting food packaging system based on machine vision[D]. Hangzhou: Zhejiang University of Technology, 2015.

    [11] 罗绍涵,张禹,丁庆勇,等. 基于传送带实时调速的Delta机器人分拣方法[J]. 自动化应用,2021(2):80-83.

    LUO Shaohan,ZHANG Yu,DING Qingyong,et al. Delta robot sorting method based on real-time speed regulation of conveyor belt[J]. Automation Applications,2021(2):80-83.

    [12] 高涵,张明路,张小俊. 冗余机械臂空间轨迹规划综述[J]. 机械传动,2016,40(10):176-180.

    GAO Han,ZHANG Minglu,ZHANG Xiaojun. A review of the space trajectory planning of redundant manipulator[J]. Journal of Mechanical Transmission,2016,40(10):176-180.

    [13] 王铮,戴坚锋,钱振宇,等. 面向传送带作业系统的机器人目标跟踪与抓取策略研究[J]. 计算机测量与控制,2016,24(11):85-90.

    WANG Zheng,DAI Jianfeng,QIAN Zhenyu,et al. Conveyor belt operating system oriented robot target tracking and grasping strategy research[J]. Computer Measurement & Control,2016,24(11):85-90.

    [14] 曹现刚,李宁,王鹏,等. 基于比例导引法的机械臂拣矸过程轨迹规划方法研究[J]. 煤炭工程,2019,51(5):154-158.

    CAO Xiangang,LI Ning,WANG Peng,et al. Research and simulation on priority and path planing of manipulator gangue picking[J]. Coal Engineering,2019,51(5):154-158.

    [15] 王鹏,曹现刚,马宏伟,等. 基于余弦定理−PID的煤矸石分拣机器人动态目标稳准抓取算法[J]. 煤炭学报,2020,45(12):4240-4247.

    WANG Peng,CAO Xiangang,MA Hongwei,et al. Dynamic target steady and accurate grasping algorithm of gangue sorting robot based on cosine theorem -PID[J]. Journal of China Coal Society,2020,45(12):4240-4247.

    [16] 黄浩然. 基于HU不变矩的垃圾分类和识别[J]. 自动化应用,2020(8):74-76.

    HUANG Haoran. Garbage classification and recognition based on HU invariant moments[J]. Automation Application,2020(8):74-76.

    [17]

    HJOUJI A,EL-MEKKAOUI J,JOURHMANE M. Rotation scaling and translation invariants by a remediation of HU's invariant moments[J]. Multimedia Tools and Applications,2020,79(1):14225-14263.

    [18] 董昱,郭碧. 基于HU不变矩特征的铁路轨道识别检测算法[J]. 铁道学报,2018,40(10):64-70. DOI: 10.3969/j.issn.1001-8360.2018.10.010

    DONG Yu,GUO Bi. Railway track detection algorithm based on HU invariant moment feature[J]. Journal of the China Railway Society,2018,40(10):64-70. DOI: 10.3969/j.issn.1001-8360.2018.10.010

    [19] 房国栋,高军伟,朱晨曦,等. 基于机器视觉的机械臂智能分拣系统[J]. 仪表技术与传感器,2020(12):72-76. DOI: 10.3969/j.issn.1002-1841.2020.12.014

    FANG Guodong,GAO Junwei,ZHU Chenxi,et al. Intelligent sorting system for manipulator based on machine vision[J]. Instrument Technique and Sensor,2020(12):72-76. DOI: 10.3969/j.issn.1002-1841.2020.12.014

    [20] 王鹏,曹现刚,夏晶,等. 基于机器视觉的多机械臂煤矸石分拣机器人系统研究[J]. 工矿自动化,2019,45(9):47-53.

    WANG Peng,CAO Xiangang,XIA Jing,et al. Research on multi-manipulator coal and gangue sorting robot system based on machine vision[J]. Industry and Mine Automation,2019,45(9):47-53.

    [21] 周高鹏,徐驰. 基于PID控制的物流搬运机械自动化轨迹规划方法研究[J]. 自动化与仪器仪表,2020(7):54-57.

    ZHOU Gaopeng,XU Chi. Research on trajectory planning method of logistics handling machinery automation based on PID control[J]. Automation & Instrumentation,2020(7):54-57.

    [22]

    LIU Shuru,SHANG Zhanlei,LEI Junwei. Research on attack angle tracking of high speed vehicle based on PID and FLNN neural network[J]. International Journal of Intelligent Robotics and Applications,2019,3(4):383-391. DOI: 10.1007/s41315-019-00112-4

    [23] 王晓海,孟秀云,周峰,等. 基于偏置比例导引的落角约束滑模制导律[J]. 系统工程与电子技术,2021,43(5):1295-1302. DOI: 10.12305/j.issn.1001-506X.2021.05.17

    WANG Xiaohai,MENG Xiuyun,ZHOU Feng,et al. Sliding mode guidance law with impact angle constraint based on bias proportional navigation[J]. Systems Engineering and Electronics,2021,43(5):1295-1302. DOI: 10.12305/j.issn.1001-506X.2021.05.17

  • 期刊类型引用(21)

    1. 王攀攀,李兴宇,戴诗科,徐瑞东,王宇佩,陈凯玄,邓先明. 基于角域重采样和领域对抗网络的滚动轴承故障迁移诊断方法及实验分析. 实验技术与管理. 2024(05): 54-61 . 百度学术
    2. 魏礼鹏,鹿伟强,于铄航,陈雯雅,张珂. 基于SA-PSO的煤矿小功率电机故障诊断研究. 煤矿机械. 2024(07): 174-176 . 百度学术
    3. 李臻. 基于提升小波-SVD差分谱的煤机设备故障诊断. 煤矿机械. 2024(10): 169-173 . 百度学术
    4. 杨秀宇,邵斌,贾少毅,赖岳华. 强背景噪声下滚动轴承轻微磨损故障特征提取方法. 煤炭工程. 2023(05): 153-159 . 百度学术
    5. 刘金森,黄炜嘉,李效龙. 基于粒子群优化支持向量机的癫痫发作预测. 计算机与数字工程. 2023(03): 736-741+747 . 百度学术
    6. 潘晓博,葛鲲鹏,钱孟浩,赵衍,董飞. 基于改进联合分布适应的轴承智能故障诊断方法. 机电工程. 2023(09): 1354-1362 . 百度学术
    7. 王玉承,李亚,王海瑞,肖杨. 基于CEEMDAN-SVM和时域特征的滚动轴承故障诊断方法研究. 化工自动化及仪表. 2022(02): 175-181 . 百度学术
    8. 李金才,付文龙,王仁明,陈星,孟嘉鑫. 基于深度网络的滚动轴承智能故障诊断. 工矿自动化. 2022(04): 78-88 . 本站查看
    9. 曹洁,张玉林,王进花,余萍. 基于VMD和SVPSO-BP的滚动轴承故障诊断. 太阳能学报. 2022(09): 294-301 . 百度学术
    10. 黄向慧,田坤臣,荣相,魏礼鹏,杨方. 变频环境下异步电机故障诊断方法. 机床与液压. 2022(18): 165-171 . 百度学术
    11. 张旭辉,鞠佳杉,杨文娟,吕欣媛. 基于数字孪生的复杂矿用设备预测性维护系统. 工程设计学报. 2022(05): 643-650+664 . 百度学术
    12. 许志鹏,刘振坚,庄德玉,尹玉玺. 基于振动信号的采矿机截割负载分类. 工矿自动化. 2022(12): 137-143 . 本站查看
    13. 王红尧,吴佳奇,李长恒,唐文锦,张艳林. 矿用钢丝绳损伤检测信号处理方法研究. 工矿自动化. 2021(02): 58-62 . 本站查看
    14. 黄重谦. 基于多隐层小波卷积极限学习神经网络的滚动轴承故障识别. 工矿自动化. 2021(05): 77-82+100 . 本站查看
    15. 黄芝玲,陈金峰,曾永华,陆筠濠,黎惠敏,朱兴统. 基于小波包模糊熵与RBF神经网络的滚动轴承故障诊断. 广东石油化工学院学报. 2021(03): 26-29 . 百度学术
    16. 宫涛,杨建华,单振,刘后广. 强噪声背景与变转速工况条件下滚动轴承故障诊断研究. 工矿自动化. 2021(07): 63-71 . 本站查看
    17. 姜家国,郭曼利,杨思国. 基于GAF和DenseNet的滚动轴承故障诊断方法. 工矿自动化. 2021(08): 84-89 . 本站查看
    18. 杨战社,孔晨再,荣相,魏礼鹏,史小军. 基于EEMD能量熵与ANN的矿用异步电机故障诊断. 微电机. 2021(08): 23-27+61 . 百度学术
    19. 郭秀才,吴妮,曹鑫. 基于特征融合与DBN的矿用通风机滚动轴承故障诊断. 工矿自动化. 2021(10): 14-20+26 . 本站查看
    20. 恵阿丽,鹿伟强,荣相,魏礼鹏,陈雯雅. 基于Park—WPT和WOA—LSSVM的异步电动机故障诊断方法. 工矿自动化. 2021(12): 106-113 . 本站查看
    27. 樊红卫,严杨,张旭辉,张超,曹现刚,薛策译,毛清华,李杰. 滚动轴承优选WPE与ANVTPSO-BPNN故障诊断. 振动.测试与诊断. 2023(03): 593-602+625-626 . 百度学术

    其他类型引用(16)

图(19)  /  表(3)
计量
  • 文章访问数:  837
  • HTML全文浏览量:  88
  • PDF下载量:  84
  • 被引次数: 37
出版历程
  • 收稿日期:  2021-11-18
  • 修回日期:  2022-03-24
  • 网络出版日期:  2022-04-05
  • 刊出日期:  2022-04-24

目录

    /

    返回文章
    返回