煤矸石分拣机器人动态目标稳定抓取轨迹规划

马宏伟, 孙那新, 张烨, 王鹏, 曹现刚, 夏晶

马宏伟,孙那新,张烨,等. 煤矸石分拣机器人动态目标稳定抓取轨迹规划[J]. 工矿自动化,2022,48(4):20-30. DOI: 10.13272/j.issn.1671-251x.2021110050
引用本文: 马宏伟,孙那新,张烨,等. 煤矸石分拣机器人动态目标稳定抓取轨迹规划[J]. 工矿自动化,2022,48(4):20-30. DOI: 10.13272/j.issn.1671-251x.2021110050
MA Hongwei, SUN Naxin, ZHANG Ye, et al. Track planning of coal gangue sorting robot for dynamic target stable grasping[J]. Journal of Mine Automation,2022,48(4):20-30. DOI: 10.13272/j.issn.1671-251x.2021110050
Citation: MA Hongwei, SUN Naxin, ZHANG Ye, et al. Track planning of coal gangue sorting robot for dynamic target stable grasping[J]. Journal of Mine Automation,2022,48(4):20-30. DOI: 10.13272/j.issn.1671-251x.2021110050

煤矸石分拣机器人动态目标稳定抓取轨迹规划

基金项目: 国家自然科学基金面上项目(51975468);国家自然科学基金项目(51705412)。
详细信息
    作者简介:

    马宏伟(1957-),男,陕西兴平人,教授,研究方向为智能检测与控制、工业机器人及机电一体化、煤矿机电设备及其自动化、智能化等,E-mail:mahw@xust.edu.cn

    通讯作者:

    孙那新(1997-),女,陕西蓝田人,硕士研究生,主要研究方向为机器人视觉伺服控制与轨迹规划,E-mail:1456282619@qq.com

  • 中图分类号: TD713

Track planning of coal gangue sorting robot for dynamic target stable grasping

  • 摘要: 针对机器人分拣煤矸石时,因输送带打滑、左右摆动而造成矸石定位不准确、机械臂末端抓取失败和载荷冲击等问题,提出了一种基于机器视觉的煤矸石分拣机器人动态目标稳定抓取轨迹规划方法。首先,采用基于HU不变矩图像匹配算法对目标矸石进行匹配识别并获取目标矸石位姿;其次,分别建立机器人和相机−机器人运动学方程,并进行正逆求解,实现基于视觉的目标矸石精确定位;最后,采用位置−速度−加速度三环PID控制算法进行目标矸石动态跟踪,即位置环控制器的输入为获取的目标矸石精确位置,位置环控制器的输出作为速度环控制器的输入,速度环控制器的输出作为加速度环控制器的输入,将加速度环控制器的输出叠加到伺服电动机上,使机械臂末端与目标矸石达到位置、速度同步运动的效果,实现平稳快速抓取。采用Matlab对三环PID控制算法、三维比例导引算法和三维偏置比例导引算法进行仿真对比,结果表明:对动态目标的跟踪抓取在追随式、同步式和拦截式3种情况下,三环PID控制算法的响应时间、跟踪抓取时间均较比例导引算法及偏置比例导引算法短,且三环PID控制算法在整个过程中各轴速度、加速度连续、平滑,没有出现突变情况,可实现动态目标同步跟踪、精准抓取。在煤矸石分拣系统平台上应用三环PID控制算法、比例导引算法和偏置比例导引算法进行适应性实验,结果表明:3种算法在机器人运行时各个关节均未超限;三环PID控制算法完成抓取的平均时间比比例导引算法和偏置比例导引算法短;三环PID控制算法在抓取点的平均速度偏差在1 mm/s左右,跟踪速度偏差较小,可满足对高速度目标的同步跟踪、精准抓取要求。
    Abstract: When the robot is used to sort coal gangue, in order to solve the problems such as inaccurate positioning of gangue, failure of grasping by end of the manipulator and load impact caused by slippage and left-right swing of belt conveyor, a track planning method of coal gangue sorting robot for dynamic target stable grasping based on machine vision is proposed. Firstly, the target gangue is identified and the pose of the target gangue is obtained by using the HU moment invariants image matching algorithm. Secondly, the kinematic equations of the robot and the camera-robot are established respectively, and the forward and inverse solutions are carried out to realize the accurate positioning of the target gangue based on vision. Finally, the position-velocity-acceleration three-loop PID control algorithm is used to dynamically track the target gangue. The input of the position loop controller is the obtained precise position of the target gangue, the output of the position loop controller is used as the input of the velocity loop controller, the output of the velocity loop controller is used as the input of the acceleration loop controller, and the output of the acceleration loop controller is superimposed on the servo motor. Therefore, the end of the manipulator and the target gangue can achieve the effect of synchronous movement of position and velocity, so as to achieve stable and fast grasping. Matlab is used to compare the three-loop PID control algorithm, the three-dimensional proportional navigation algorithm and the three-dimensional biased proportional navigation algorithm. The results show that in the following, synchronous and intercepting cases of the tracking and grasping of dynamic targets, the response time and tracking and grasping time of the three-loop PID control algorithm are better than those of the proportional navigation algorithm and the biased proportional navigation algorithm. And the three-loop PID control algorithm is continuous and smooth in the speed and acceleration of each axis in the whole process without sudden change, which can realize synchronous tracking of dynamic targets and precise grasping. The three-loop PID control algorithm, proportional navigation algorithm and biased proportional navigation algorithm are applied to the coal gangue sorting system platform to carry out adaptability experiments. The results show that the three algorithms do not exceed the limit of each joint during robot operation. The average time of the three-loop PID control algorithm to complete the grasping is shorter than those of the proportional navigation algorithm and the biased proportional navigation algorithm. The average speed error of the three-loop PID control algorithm at the grasping point is about 1 mm/s, and the tracking speed error is small, which can meet the requirements of synchronous tracking and precise grasping of high-speed targets.
  • 图  1   煤矸石分拣机器人系统组成

    Figure  1.   Composition of coal gangue sorting robot system

    图  2   动态目标稳定抓取轨迹控制流程

    Figure  2.   Dynamic target stable grasping track control process

    图  3   基于HU不变矩的动态目标匹配流程

    Figure  3.   Flow chart of dynamic target matching based on HU moment invariants

    图  4   目标矸石匹配结果

    Figure  4.   Target gangue matching results

    图  5   煤矸石分拣机器人运动学坐标系模型

    Figure  5.   Kinematics coordinate system model of coal gangue sorting robot

    图  6   坐标系转换关系

    Figure  6.   Coordinate system transformation diagram

    图  7   追随式3种算法动态目标轨迹规划曲线

    Figure  7.   Dynamic target track planning curves of three algorithms under following track planning mode

    图  8   追随式3种算法X轴向位置、速度、加速度变化曲线

    Figure  8.   X axial position, velocity and acceleration curves of three algorithms under following track planning mode

    图  9   追随式3种算法Y轴向位置、速度、加速度变化曲线

    Figure  9.   Y axial position, velocity and acceleration curves of three algorithms under following track planning mode

    图  10   追随式3种算法Z轴向位置、速度、加速度变化曲线

    Figure  10.   Z axial position, velocity and acceleration curves of three algorithms under following track planning mode

    图  11   同步式3种算法动态目标轨迹规划曲线

    Figure  11.   Dynamic target track planning curves of three algorithms under synchronous track planning mode

    图  12   同步式3种算法X轴向位置、速度、加速度变化曲线

    Figure  12.   X axial position, velocity and acceleration curves of three algorithms under synchronous track planning mode

    图  13   同步式3种算法Y轴向位置、速度、加速度变化曲线

    Figure  13.   Y axial position, velocity and acceleration curves of three algorithms under synchronous track planning mode

    图  14   同步式3种算法Z轴向位置、速度、加速度变化曲线

    Figure  14.   Z axial position, velocity and acceleration curves of three algorithms under synchronous track planning mode

    图  15   拦截式3种算法动态目标轨迹规划曲线

    Figure  15.   Dynamic target track planning  curves of three algorithms under intercepting track planning mode

    图  16   拦截式3种算法X轴向位置、速度、加速度变化曲线

    Figure  16.   X axial position, velocity and acceleration curves of three algorithms under intercepting track planning mode

    图  17   拦截式3种算法Y轴向位置、速度、加速度变化曲线

    Figure  17.   Y axial position, velocity and acceleration curves of three algorithms under intercepting track planning mode

    图  18   拦截式3种算法Z轴向位置、速度、加速度变化曲线

    Figure  18.   Z axial position, velocity and acceleration curves of three algorithms under intercepting track planning mode

    图  19   煤矸石分拣机器人实验平台

    Figure  19.   Experimental platform of coal gangue sorting robot

    表  1   煤矸石分拣机器人运动结构参数

    Table  1   Motion structure parameters of coal gangue sorting robot

    转换矩阵运动结构参数
    ${{\boldsymbol{M}}}_{1}^{{\rm{W}}}$α1l1d1θ1
    ${{\boldsymbol{M}}}_{2}^{1}$α2l2d2θ2
    ${{\boldsymbol{M}}}_{{\rm{E}}}^{2}$α3l3d3θ3
    下载: 导出CSV

    表  2   3种算法运动仿真参数

    Table  2   3 kinds of algorithm motion simulation parameters

    轨迹规划算法初始速度
    /(m·s−1)
    加速度
    /(m·s−2)
    加速时间
    /s
    偏置比例导引0100.3
    比例导引0100.3
    三环PID控制0
    下载: 导出CSV

    表  3   3种算法实验结果

    Table  3   Experimental results of three algorithms

    (∆X,∆Y,∆Z)/m
    v
    /(m·s−1)
    tPID
    /s
    tB
    /s
    tP
    /s
    ESPID
    /mm
    ESB
    /mm
    ESP
    /mm
    EVPID

    /(m·s−1)
    EVB
    /(m·s−1)
    EVP
    /(m·s−1)
    (0.5,0.5,0.4)0.90.4250.5430.5561.180.920.820.001 52.1012.113
    1.00.4690.5640.5641.011.031.130.001 22.0032.011
    1.10.4860.5880.5940.921.150.870.000 91.9041.910
    (0,0.5,0.4)0.90.3010.3960.4261.111.030.850.000 42.1062.101
    1.00.3020.4040.4501.041.311.160.000 62.0102.004
    1.10.3100.4140.4650.941.031.070.001 11.9161.905
    (−0.5,0.5,0.4)0.90.3030.3720.4271.210.901.190.001 32.1152.102
    1.00.3080.3690.4561.061.031.100.000 92.0132.009
    1.10.3110.3670.4921.040.920.970.001 41.9071.913
    下载: 导出CSV
  • [1] 尹建平. 平朔矿区煤矸石山生态修复模式[J]. 露天采矿技术,2021,36(4):87-88.

    YIN Jianping. Ecological restoration model of coal gangue dump in Pingshuo mining area[J]. Opencat Mining Technology,2021,36(4):87-88.

    [2] 董增澳,李萍,贾一雪,等. 煤矸石综合利用与资源化处理研究进展[J]. 环境保护前沿,2021,11(2):363-371. DOI: 10.12677/AEP.2021.112040

    DONG Zeng'ao,LI Ping,JIA Yixue,et al. Research progress on comprehensive utilization and resourceful treatment of coal gangue[J]. Advances in Environmental Protection,2021,11(2):363-371. DOI: 10.12677/AEP.2021.112040

    [3] 李宁. 煤矸分拣机器人控制系统研究[D]. 西安: 西安科技大学, 2019.

    LI Ning. Study on the control system of coal mine sorting robots[D]. Xi'an: Xi'an University of Science and Technology, 2019.

    [4] 曹亦俊,刘敏,邢耀文,等. 煤矿井下选煤技术现状和展望[J]. 采矿与安全工程学报,2020,37(1):192-201.

    CAO Yijun,LIU Min,XING Yaowen,et al. Current situation and prospect of underground coal preparation technology[J]. Journal of Mining & Safety Engineering,2020,37(1):192-201.

    [5] 费佳浩. 煤矸分拣机器人结构设计及运动分析[D]. 西安: 西安科技大学, 2019.

    FEI Jiahao. Structure design and motion analysis of coal gangue sorting robot[D]. Xi'an: Xi'an University of Science and Technology, 2019.

    [6]

    CROFT E. A,FENTON R. G,BENHABIB B. Optimal rendezvous-point selection for robotic interception of moving objects[J]. IEEE Tranactions on Systems,Man,and Cybernetics,1998,28(2):192-204.

    [7]

    ZHANG Zhengyou. Camera calibration with one-dimensional objects[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(7):892-899. DOI: 10.1109/TPAMI.2004.21

    [8] 张朝阳,周惠兴,曹荣敏,等. 基于金字塔形寻优的传送带动态抓取研究[J]. 制造业自动化,2015,37(9):92-95. DOI: 10.3969/j.issn.1009-0134.2015.09.026

    ZHANG Chaoyang,ZHOU Huixing,CAO Rongmin,et al. Research on dynamic conveyor grasping with pyramid search algorithm[J]. Manufacturing Automation,2015,37(9):92-95. DOI: 10.3969/j.issn.1009-0134.2015.09.026

    [9]

    LIN Yunhan,MIN Huasong,ZHOU Haotian,et al. A human-robot-environment interactive reasoning mechanism for object sorting robot[J]. IEEE Transactions on Cognitive & Developmental,2018,10(3):611-623.

    [10] 刘子龙. 基于机器视觉的快速分拣食品包装系统研究[D]. 杭州: 浙江工业大学, 2015.

    LIU Zilong. The research quick sorting food packaging system based on machine vision[D]. Hangzhou: Zhejiang University of Technology, 2015.

    [11] 罗绍涵,张禹,丁庆勇,等. 基于传送带实时调速的Delta机器人分拣方法[J]. 自动化应用,2021(2):80-83.

    LUO Shaohan,ZHANG Yu,DING Qingyong,et al. Delta robot sorting method based on real-time speed regulation of conveyor belt[J]. Automation Applications,2021(2):80-83.

    [12] 高涵,张明路,张小俊. 冗余机械臂空间轨迹规划综述[J]. 机械传动,2016,40(10):176-180.

    GAO Han,ZHANG Minglu,ZHANG Xiaojun. A review of the space trajectory planning of redundant manipulator[J]. Journal of Mechanical Transmission,2016,40(10):176-180.

    [13] 王铮,戴坚锋,钱振宇,等. 面向传送带作业系统的机器人目标跟踪与抓取策略研究[J]. 计算机测量与控制,2016,24(11):85-90.

    WANG Zheng,DAI Jianfeng,QIAN Zhenyu,et al. Conveyor belt operating system oriented robot target tracking and grasping strategy research[J]. Computer Measurement & Control,2016,24(11):85-90.

    [14] 曹现刚,李宁,王鹏,等. 基于比例导引法的机械臂拣矸过程轨迹规划方法研究[J]. 煤炭工程,2019,51(5):154-158.

    CAO Xiangang,LI Ning,WANG Peng,et al. Research and simulation on priority and path planing of manipulator gangue picking[J]. Coal Engineering,2019,51(5):154-158.

    [15] 王鹏,曹现刚,马宏伟,等. 基于余弦定理−PID的煤矸石分拣机器人动态目标稳准抓取算法[J]. 煤炭学报,2020,45(12):4240-4247.

    WANG Peng,CAO Xiangang,MA Hongwei,et al. Dynamic target steady and accurate grasping algorithm of gangue sorting robot based on cosine theorem -PID[J]. Journal of China Coal Society,2020,45(12):4240-4247.

    [16] 黄浩然. 基于HU不变矩的垃圾分类和识别[J]. 自动化应用,2020(8):74-76.

    HUANG Haoran. Garbage classification and recognition based on HU invariant moments[J]. Automation Application,2020(8):74-76.

    [17]

    HJOUJI A,EL-MEKKAOUI J,JOURHMANE M. Rotation scaling and translation invariants by a remediation of HU's invariant moments[J]. Multimedia Tools and Applications,2020,79(1):14225-14263.

    [18] 董昱,郭碧. 基于HU不变矩特征的铁路轨道识别检测算法[J]. 铁道学报,2018,40(10):64-70. DOI: 10.3969/j.issn.1001-8360.2018.10.010

    DONG Yu,GUO Bi. Railway track detection algorithm based on HU invariant moment feature[J]. Journal of the China Railway Society,2018,40(10):64-70. DOI: 10.3969/j.issn.1001-8360.2018.10.010

    [19] 房国栋,高军伟,朱晨曦,等. 基于机器视觉的机械臂智能分拣系统[J]. 仪表技术与传感器,2020(12):72-76. DOI: 10.3969/j.issn.1002-1841.2020.12.014

    FANG Guodong,GAO Junwei,ZHU Chenxi,et al. Intelligent sorting system for manipulator based on machine vision[J]. Instrument Technique and Sensor,2020(12):72-76. DOI: 10.3969/j.issn.1002-1841.2020.12.014

    [20] 王鹏,曹现刚,夏晶,等. 基于机器视觉的多机械臂煤矸石分拣机器人系统研究[J]. 工矿自动化,2019,45(9):47-53.

    WANG Peng,CAO Xiangang,XIA Jing,et al. Research on multi-manipulator coal and gangue sorting robot system based on machine vision[J]. Industry and Mine Automation,2019,45(9):47-53.

    [21] 周高鹏,徐驰. 基于PID控制的物流搬运机械自动化轨迹规划方法研究[J]. 自动化与仪器仪表,2020(7):54-57.

    ZHOU Gaopeng,XU Chi. Research on trajectory planning method of logistics handling machinery automation based on PID control[J]. Automation & Instrumentation,2020(7):54-57.

    [22]

    LIU Shuru,SHANG Zhanlei,LEI Junwei. Research on attack angle tracking of high speed vehicle based on PID and FLNN neural network[J]. International Journal of Intelligent Robotics and Applications,2019,3(4):383-391. DOI: 10.1007/s41315-019-00112-4

    [23] 王晓海,孟秀云,周峰,等. 基于偏置比例导引的落角约束滑模制导律[J]. 系统工程与电子技术,2021,43(5):1295-1302. DOI: 10.12305/j.issn.1001-506X.2021.05.17

    WANG Xiaohai,MENG Xiuyun,ZHOU Feng,et al. Sliding mode guidance law with impact angle constraint based on bias proportional navigation[J]. Systems Engineering and Electronics,2021,43(5):1295-1302. DOI: 10.12305/j.issn.1001-506X.2021.05.17

  • 期刊类型引用(42)

    1. 刘晓松,李传习,李鹏,周栋,王霓娟. BIM+UE在智慧矿山运维管理中的应用研究. 智能建筑与智慧城市. 2025(02): 70-72 . 百度学术
    2. 李自尊,张一凡. 智能运维监控平台在数字孪生黄河建设中的应用. 水利水电快报. 2024(01): 95-100+115 . 百度学术
    3. 张水平,熊思超,陈乐. 矿山全员安全风险管控数字化平台的研究与应用. 矿业研究与开发. 2024(05): 234-242 . 百度学术
    4. 牛莉霞,李肖萌. 5G时代面向情报需求的智慧矿山应急管理新模式研究. 灾害学. 2024(03): 228-234 . 百度学术
    5. 田佳伟,唐子山. 基于边缘计算和ST-YOLO的矿井智能监控技术研究. 煤炭工程. 2024(07): 165-173 . 百度学术
    6. 谢晓斌,高文远,向平,何义华. 基于3D GIS的5G全连接采矿数字孪生系统建设研究. 中国矿业. 2024(S2): 133-138 . 百度学术
    7. 赵连环,孙鹏程,魏文慧. AI识别技术在煤矿主煤流运输系统中的研究与应用. 中国机械. 2024(30): 62-66 . 百度学术
    8. 沈铭华,马昆,杨洋,王九洲,仓义勇. AI智能视频识别技术在煤矿智慧矿山中的应用. 煤炭工程. 2023(04): 92-97 . 百度学术
    9. 陈伟,胡而已. 基于微服务架构的大型智能矿山建设研究与设计. 中国煤炭. 2023(05): 94-101 . 百度学术
    10. 刘洋. 数字孪生技术在智慧矿山中的应用探讨. 中国非金属矿工业导刊. 2023(04): 73-75 . 百度学术
    11. 费文涛. BIM的智慧矿山工程安全技术研究. 世界有色金属. 2023(10): 220-222 . 百度学术
    12. 胡金成,张立斌,蒋泽,姚超修,蒋志龙,王正义. 基于AI视频分析的煤矿瓦斯抽采钻场远程监督管理方法. 工矿自动化. 2023(11): 167-172 . 本站查看
    13. 邓文革,赵星宇,张仁生. 煤矿云计算数据中心建设研究. 工矿自动化. 2023(S2): 103-106 . 本站查看
    14. 库新勃,张玮,胡昕,杨生彬,雷倩芳,杨正辉,左涛. 混合渲染方法智慧矿山三维可视化综合管理系统建设. 能源与节能. 2023(12): 1-4+48 . 百度学术
    15. 鲁杰,李平,徐青云,宁掌玄,张望杰,郑嘉璐. “双碳”背景下山西省智慧矿山建设路径研究. 煤炭工程. 2022(03): 186-192 . 百度学术
    16. 顾红超,包峰,吴冬,王向荣. 粉料投料装置的三维可视化技术研究. 铀矿冶. 2022(02): 137-141+154 . 百度学术
    17. 李文超. 基于信息融合的医院档案信息可视化管控系统设计. 自动化技术与应用. 2022(05): 164-167+179 . 百度学术
    18. 赵佰亭,庞猛,贾晓芬. 一种深立井井筒数据采集及分析系统设计. 工矿自动化. 2022(05): 118-122 . 本站查看
    19. 梁茂云,张帆,孙晶晶. 可视化管理研究领域文献计量分析. 科学观察. 2022(03): 47-57 . 百度学术
    20. 张建中,郭军. 智慧矿山工业互联网技术架构探讨. 煤炭科学技术. 2022(05): 238-246 . 百度学术
    21. 黄智煌,邬娜,仇巍巍. 基于3D GIS和物联网的智慧矿山三维可视化系统设计与实现. 自然资源信息化. 2022(02): 50-56 . 百度学术
    22. 李凤英,季现伟,张维国,谷龙飞,张海胜. 智能矿山5G技术发展与应用场景分析. 中国矿山工程. 2022(04): 89-92 . 百度学术
    23. 范晶晶. 煤炭企业物流供应链可视化管理平台. 物流工程与管理. 2022(10): 52-54 . 百度学术
    24. 张兵. 煤矿智能化综合管控平台研究. 工矿自动化. 2022(S2): 65-69 . 本站查看
    25. 贺耀宜,高文,杨耀,荆诚,朱沙沙,陈醒. 智能矿山多元监控信息融合与联动研究. 工矿自动化. 2022(11): 11-19 . 本站查看
    26. 孙春升,宋晓波,弓海军. 煤矿智慧矿山建设策略研究. 煤炭工程. 2021(02): 191-196 . 百度学术
    27. 张华,李靖锋,魏红磊,刘真. 基于智能视频识别技术的智能化煤矿安全管理研究与应用. 工矿自动化. 2021(S1): 10-13 . 本站查看
    28. 邵思维,徐巍,谷龙飞,张维国,裴明辉,温瑞恒. 基于某铜矿的智能充填生产信息管理系统解决方案. 有色设备. 2021(02): 82-86 . 百度学术
    29. 谢春华. 三维智慧矿山系统平台的设计与实现. 电子技术与软件工程. 2021(07): 60-61 . 百度学术
    30. 李敏,赵硕嫱. 基于实施监测数据的矿井通风仿真技术研究. 煤炭技术. 2021(05): 145-148 . 百度学术
    31. 郭蓬元,段海峰. 煤矿企务大厅建设中的业务与财务一体化问题研究. 矿业研究与开发. 2021(06): 176-181 . 百度学术
    32. 王志红,杨富强,张海增,张超力. 煤矿编码体系构建与应用. 能源与节能. 2021(06): 216-218 . 百度学术
    33. 牛莉霞,李肖萌. 5G时代智慧矿山安全管理新模式. 中国安全科学学报. 2021(06): 29-36 . 百度学术
    34. 韩安,陈晓晶,贺耀宜,高文. 智能矿山综合管控平台建设构思. 工矿自动化. 2021(08): 7-14 . 本站查看
    35. 朱君,王浩,蒲晓虎,何奇. 重庆气象可视化监控平台的设计与实现. 气象水文海洋仪器. 2021(03): 82-84 . 百度学术
    36. 兰逢春,吴兴铨. 5G赋能智慧矿山的思考和发展. 广西通信技术. 2021(03): 42-47 . 百度学术
    37. 李雯静,谢展扬,张馨心,邱莉,戴子藤. 实验室火灾风险可视化管理方法研究及应用. 实验技术与管理. 2021(12): 255-262 . 百度学术
    38. 李敬兆,秦晓伟,汪磊. 基于边云协同框架的煤矿井下实时视频处理系统. 工矿自动化. 2021(12): 1-7 . 本站查看
    39. 刘强. 基于Cesium技术的露天矿山三维可视化数据平台研究. 内蒙古煤炭经济. 2021(20): 31-33 . 百度学术
    40. 杨景峰,刘战武. 基于大数据分析的安全生产信息共享平台建设及管理. 陕西煤炭. 2020(03): 123-127 . 百度学术
    41. 毛善君,崔建军,王世斌,涂兴子,张鹏鹏,李梅. 煤矿智能开采信息共享管理平台构建研究. 煤炭学报. 2020(06): 1937-1948 . 百度学术
    42. 刘文辉. 大型铜矿山信息化建设探讨. 财富时代. 2020(07): 201 . 百度学术

    其他类型引用(16)

图(19)  /  表(3)
计量
  • 文章访问数:  837
  • HTML全文浏览量:  90
  • PDF下载量:  87
  • 被引次数: 58
出版历程
  • 收稿日期:  2021-11-18
  • 修回日期:  2022-03-24
  • 网络出版日期:  2022-04-05
  • 刊出日期:  2022-04-24

目录

    /

    返回文章
    返回