分层开采下分层大断面开切眼顶板稳定性评估

柴敬, 乔钰, 高士岗, 高登彦, 陈苏社, 吕情绪, 杜文刚, 韩志成

柴敬,乔钰,高士岗,等. 分层开采下分层大断面开切眼顶板稳定性评估[J]. 工矿自动化,2022,48(5):21-31. DOI: 10.13272/j.issn.1671-251x.2021110029
引用本文: 柴敬,乔钰,高士岗,等. 分层开采下分层大断面开切眼顶板稳定性评估[J]. 工矿自动化,2022,48(5):21-31. DOI: 10.13272/j.issn.1671-251x.2021110029
CHAI Jing, QIAO Yu, GAO Shigang, et al. Roof stability evaluation of large section open-off cut in lower slice of slicing mining[J]. Journal of Mine Automation,2022,48(5):21-31. DOI: 10.13272/j.issn.1671-251x.2021110029
Citation: CHAI Jing, QIAO Yu, GAO Shigang, et al. Roof stability evaluation of large section open-off cut in lower slice of slicing mining[J]. Journal of Mine Automation,2022,48(5):21-31. DOI: 10.13272/j.issn.1671-251x.2021110029

分层开采下分层大断面开切眼顶板稳定性评估

基金项目: 国家自然科学基金项目(41027002)。
详细信息
    作者简介:

    柴敬(1964—),男,宁夏平罗人,教授,博士研究生导师,主要从事采矿工程、实验岩石力学及光纤传感方面的研究工作,E-mail:chaij@xust.edu.cn

  • 中图分类号: TD325

Roof stability evaluation of large section open-off cut in lower slice of slicing mining

  • 摘要: 为了研究分层开采下分层工作面大断面开切眼顶煤稳定性问题,以大柳塔煤矿活鸡兔井1−2煤层下分层203开切眼顶煤的14个钻孔为研究背景,采用理论分析、数值模拟和现场钻孔窥视分析了上分层开采与下分层开切眼掘进对开切眼顶煤塑性区的影响,并通过岩体完整性指数对顶板结构稳定性进行评价。从顶煤结构形态来看,由于上分层开采造成开切眼顶煤局部超挖或欠挖现象,开切眼的最大超挖量为1.2 m,最大欠挖量为0.8 m,顶煤不平整率为27.7%。理论分析结果表明:受上分层开切眼顶煤采动影响,底煤塑性区深度为2.02 m;受下分层开切眼掘进扰动影响,顶煤塑性区深度为1.50 m。钻孔窥视结果表明:将开切眼顶煤塑性区分别按理论计算和钻孔窥视划分为理论塑性区与实测塑性区,上分层采动影响造成的底板实测塑性区深度范围为1.06~2.04 m,下分层开切眼掘进扰动影响造成的顶煤实测塑性区深度范围为0.34~1.50 m,上分层采动影响造成的底板实测塑性区比理论塑性区平均小17.63%,下分层开切眼掘进扰动造成的顶煤实测塑性区比理论塑性区平均小25.82%。数值模拟分析结果表明:上分层采动影响造成的底煤塑性区深度范围为1~2 m,下分层开切眼掘进扰动影响造成的顶煤塑性区深度为1 m。上述3者所得结果一致性程度较高。开切眼顶煤稳定性评价结果表明:顶煤完整性指数范围为42.9%~87.9%,顶煤厚度与完整性指数呈正相关,与裂隙发育呈负相关,顶煤完整性评价为良好以上的占比超过1/2,说明顶煤整体结构基本完整。该研究结果可为分层开采下分层大断面开切眼同类工矿条件的顶煤厚度留设及支护方案设计提供参考。
    Abstract: In order to study the roof stability of large-section open-off cut in lower slice of slicing mining, the 14 boreholes in the top coal of the 203 open-off cut in the lower slice of 1−2 coal seam in Huojitu Mine of Daliuta Mine is taken as the research background. The influence of the upper slice mining and the lower slice open-off cut driving on the plastic zone of the top coal of the open-off cut is analyzed by theoretical analysis, numerical simulation and field borehole peep technology. And the stability of the roof structure is evaluated by the rock mass integrity index. From the perspective of the top coal structure form, the top coal of the open-off cut is partially over-excavated or under-excavated due to the upper slicing mining. The maximum over-excavation of the open-off cut is 1.2 m, the maximum under-excavation is 0.8 m, and top-coal uneven rate is 27.7%. The result of theoretical analysis show that due to the influence of upper slice mining of the top coal of the open-off cut, the depth of plastic zone in the floor is 2.02 m. Due to the disturbance of the lower slice mining of the open-off cut, the depth of the plastic zone in the top coal is 1.50 m. Borehole peep results show that the plastic zone of the open-off cut top coal is divided into the theoretical plastic zone and the measured plastic zone according to the theoretical calculation and borehole peep respectively. Due to the influence of upper slice mining, the depth of the measured plastic zone in the floor is 1.06-2.04 m. Due to the disturbance of the lower slice mining of the open-off cut, the depth of the measured plastic zone in the top coal is 0.34-1.50 m. The measured plastic zone caused by the influence of upper slice mining on floor is 17.63% smaller than the theoretical plastic zone. The measured plastic zone of the top coal caused by the disturbance of lower slice mining of the open-off cut is 25.82% smaller than the theoretical plastic zone. The result of numerical simulation analysis shows that due to the influence of upper slice mining, the depth of plastic zone in the floor is 1-2 m. Due to the disturbance of the lower slice mining of the open-off cut, the depth of plastic zone in the top coal is 1 m. The results obtained by the above three methods are highly consistent. The stability evaluation results of the top coal in the open-off cut show that the top coal integrity index ranges from 42.9% to 87.9%. The top coal thickness is positively correlated with the integrity index and negatively correlated with the fracture development. The proportion of top coal integrity evaluation as good or above is more than 1/2, indicating that the overall structure of top coal is basically complete. The research results can provide reference for the design of top coal thickness retention standard and support scheme of large section open-off cut in lower slice of slicing mining under similar mining conditions.
  • 图  1   1−2下203开切眼布置

    Figure  1.   1−2203 open-off cut layout

    图  2   开切眼钻孔布置

    Figure  2.   Borehole peeping layout of open-off cut

    图  3   顶煤结构形态

    Figure  3.   Top coal structure aspect graph

    图  4   顶煤厚度区间分布

    Figure  4.   Interval distribution of top coal thickness

    图  5   1号测站钻孔窥视全景

    Figure  5.   Borehole peep panorama of station No.1

    图  6   顶煤钻孔窥视裂隙发育分布

    Figure  6.   Distribution of fracture development in top coal borehole peeping

    图  7   全段钻孔裂隙数分布

    Figure  7.   Distribution of fracture number in whole section of borehole peeping

    图  8   顶煤理论塑性区范围与实测塑性区范围划分

    Figure  8.   Division of theoretical plastic zone and mearsured plastic zone of top coal

    图  9   411号塑性区边界

    Figure  9.   Plastic zone 411 boundary

    图  10   顶煤两侧塑性区范围与弹性区划分

    Figure  10.   Division of plastic zone and elastic zone on both sides of top coal

    图  11   上分层开采对顶煤影响

    Figure  11.   Influence of disturbance of upper slice mining on top coal

    图  12   开切眼掘进对顶煤塑性区影响

    Figure  12.   Influence of open-off cut driving tunneling on the plastic area of top coal

    图  13   顶煤厚度与完整性指数关系

    Figure  13.   Relationship between top coal thickness and integrity index

    图  14   顶煤结构发育程度占比

    Figure  14.   Percentage of top coal structure development

    表  1   岩石力学参数

    Table  1   Rock mechanics parameter

    地质参数体积模
    量/GPa
    剪切模
    量/GPa
    内聚力/
    MPa
    抗拉强
    度/MPa
    摩擦角/(°)容重/
    (kN·m−3
    中粒砂岩1.10.8320.63725.8
    粗粒砂岩1.40.962.50.753425.6
    11煤层0.430.340.60.32814.3
    12煤层0.430.340.60.32814.3
    细粒砂岩0.670.482.42.164232.58
    粉砂岩1.431.122.751.843824.6
    下载: 导出CSV

    表  2   开切眼顶煤与1−2煤层力学参数

    Table  2   Mechanical parameters of top coal in the open-off cut and 1−2 coal seam

    力学参数弹性模量/GPa抗压强度/MPa抗拉强度/MPa
    1−2煤层参考值1.8~3.520~401.4~5
    顶煤实验力学值0.96~2.643.9~14.50.86~2.2
    下载: 导出CSV

    表  3   不同结构类型所对应的$ \alpha $

    Table  3   The α coefficients corresponding to different structural types

    结构类型岩体块度尺寸/m$ \alpha $
    整体状>1.01.0
    块状0.6~1.00.8
    层状0.3~0.60.5
    碎裂状0.1~0.30.2
    散体状<0.10.1
    下载: 导出CSV
  • [1] 常立宗,苏学贵,杜献杰,等. 高应力区巷道支护结构采动破坏特征研究[J]. 工矿自动化,2021,47(3):20-26.

    CHANG Lizong,SU Xuegui,DU Xianjie,et al. Research on mining damage characteristics of roadway support structure in high stress area[J]. Industry and Mine Automation,2021,47(3):20-26.

    [2] 杨真,杨永亮,郭瑞瑞,等. 开采厚度对沿空掘巷围岩稳定性的影响分析[J]. 工矿自动化,2021,47(2):38-44.

    YANG Zhen,YANG Yongliang,GUO Ruirui,et al. Analysis of the influence of mining thickness on the stability of surrounding rock of goaf-side roadway driving[J]. Industry and Mine Automation,2021,47(2):38-44.

    [3] 李颜,高召宁,陈登国,等. 锚固承载层作用下巷道围岩稳定性分析[J]. 工矿自动化,2021,47(4):85-91.

    LI Yan,GAO Zhaoning,CHEN Dengguo,et al. Stability analysis of roadway surrounding rock under the action of bolt bearing layer[J]. Industry and Mine Automation,2021,47(4):85-91.

    [4] 何富连,许磊,吴焕凯,等. 厚煤顶大断面切眼裂隙场演化及围岩稳定性分析[J]. 煤炭学报,2014,33(2):336-346.

    HE Fulian,XU Lei,WU Huankai,et al. Fracture field evolution and stability analysis of surrounding rock in thick coal roof large-section open-off cut[J]. Journal of China Coal Society,2014,33(2):336-346.

    [5] 张斌,苏学贵,段振雄,等. 受掘进扰动影响的巷道围岩稳定性控制研究[J]. 矿业安全与环保,2020,47(6):19-24,31.

    ZHANG Bin,SU Xuegui,DUAN Zhenxiong,et al. Study on stability control of surrounding rock of roadway affected by driving disturbance[J]. Mining Safety & Environmental Protection,2020,47(6):19-24,31.

    [6] 杨朋,华心祝,杨科,等. 深井复合顶板条件下沿空留巷顶板变形特征试验及控制对策[J]. 采矿与安全工程学报,2017,34(6):1067-1074.

    YANG Peng,HUA Xinzhu,YANG Ke,et al. Experiment of compound roof deformation characteristics of gob-side retaining entry in deep mine and support measures[J]. Journal of Mining & Safety Engineering,2017,34(6):1067-1074.

    [7] 张百胜. 极近距离煤层开采围岩控制理论及技术研究[D]. 太原: 太原理工大学, 2008.

    ZHANG Baisheng. Study on the surrounding rock control theory and theory and technology of ultra-close multiple-seams mining[D]. Taiyuan: Taiyuan University of Technology, 2008.

    [8] 张金才,刘天泉. 论煤层底板采动裂隙带的深度及分布特征[J]. 煤炭学报,1990(2):46-55. DOI: 10.3321/j.issn:0253-9993.1990.02.002

    ZHANG Jincai,LIU Tianquan. On depth of fissrued zone in seam floor resulted from coal extraction and its distribution characteristics[J]. Journal of China Coal Society,1990(2):46-55. DOI: 10.3321/j.issn:0253-9993.1990.02.002

    [9] 张文彬. 综采放顶煤工作面底板应力及其破坏深度分析[J]. 煤炭科学技术,2010,38(12):17-21.

    ZHANG Wenbin. Analysis on floor stress and failure depth of fully mechanized top coal caving mining face[J]. Coal Science and Technology,2010,38(12):17-21.

    [10] 张召千,徐明德,刘泉声. 煤巷围岩稳定性加权平均评价方法研究[J]. 岩土力学,2009,30(11):3464-3468. DOI: 10.3969/j.issn.1000-7598.2009.11.041

    ZHANG Zhaoqian,XU Mingde,LIU Quansheng. The research on the methodology of weighted average evaluation for surrounding rock stability of tunnel[J]. Rock and Soil Mechanics,2009,30(11):3464-3468. DOI: 10.3969/j.issn.1000-7598.2009.11.041

    [11] 杨仁树,王茂源,马鑫民,等. 煤巷围岩稳定性分类研究[J]. 煤炭科学技术,2015,43(10):40-45,92.

    YANG Renshu,WANG Maoyuan,MA Xinmin,et al. Research on surrounding rock stability classification of coal drift[J]. Coal Science and Technology,2015,43(10):40-45,92.

    [12] 耿越,段迎娟,任家敏. 煤巷顶板稳定性评价方法研究[J]. 工矿自动化,2018,44(6):35-39.

    GENG Yue,DUAN Yingjuan,REN Jiamin. Research on roof stability assessment method of coal roadway[J]. Industry and Mine Automation,2018,44(6):35-39.

    [13] 吕情绪,董俊亮,柴敬. 分层开采采空区下大断面切眼支护[J]. 科学技术与工程,2021,21(20):8395-8402. DOI: 10.3969/j.issn.1671-1815.2021.20.015

    LYU Qingxu,DONG Junliang,CHAI Jing. Support of large section off cut under goaf in slicing mining[J]. Science Technology and Engineering,2021,21(20):8395-8402. DOI: 10.3969/j.issn.1671-1815.2021.20.015

    [14] 尚奇. 1 m近距离煤层采空区下回采巷道应力场分布及支护技术研究[D]. 太原: 太原理工大学, 2018.

    SHANG Qi. Study on the stress field distribution & supporting technology for mining roadway under goaf in 1 m close distance coal seams mining[D]. Taiyuan: Taiyuan University of Technology, 2018.

    [15] 赵通. 虎峰煤业厚煤层遗煤复采的关键开采参数及围岩控制技术研究[D]. 太原: 太原理工大学, 2018.

    ZHAO Tong. Study on the key mining parameters and the surrounding rock control technology of the remaining coal in the thick seam of Hufeng Coal[D]. Taiyuan: Taiyuan University of Technology, 2018.

    [16] 聂百胜,张辉,崔树江,等. 前视钻孔窥视视频提取钻孔信息的方法与应用[J]. 煤炭学报,2016,41(5):1316-1322.

    NIE Baisheng,ZHANG Hui,CUI Shujiang,et al. Extraction method of borehole panoramic image from televiewer video[J]. Joural of China Coal Society,2016,41(5):1316-1322.

    [17] 王川婴,胡培良,孙卫春. 基于钻孔摄像技术的岩体完整性评价方法[J]. 岩土力学,2010,31(4):1326-1330. DOI: 10.3969/j.issn.1000-7598.2010.04.055

    WANG Chuanying,HU Peiliang,SUN Weichun. Method for evaluating rock mass integrity based on borehole camera technology[J]. Rock and Soil Mechanics,2010,31(4):1326-1330. DOI: 10.3969/j.issn.1000-7598.2010.04.055

  • 期刊类型引用(2)

    1. 刘晓阳,郑昊琳,刘金强,王栋,孙明飞. 基于压缩感知改进SP算法的井下人员定位方法. 煤炭技术. 2022(05): 164-167 . 百度学术
    2. 田子建,贺方圆. 一种基于分布式压缩感知的矿井目标指纹数据库建立方法. 电子与信息学报. 2019(10): 2450-2456 . 百度学术

    其他类型引用(2)

图(14)  /  表(3)
计量
  • 文章访问数:  223
  • HTML全文浏览量:  120
  • PDF下载量:  29
  • 被引次数: 4
出版历程
  • 收稿日期:  2021-11-11
  • 修回日期:  2022-04-01
  • 网络出版日期:  2022-03-22
  • 刊出日期:  2022-05-26

目录

    /

    返回文章
    返回