Abstract:
Denoising is an important preprocessing step for the effective application of remote sensing images in mining area. The existing remote sensing image denoising methods based on statistics, domain transformation and learning generally have the problems of excessive smoothing of details and insufficient texture preservation. Based on the good edge-preserving property of guided filtering, an iterative guided filtering method is proposed. The method enhances the edge characteristics extraction effect of remote sensing images by guided mapping of residual information, and iteratively performing guided filtering and hyper-parameter shrinkage. The iterative guided filtering is combined with traditional wavelet soft threshold, non-local mean (NLM) filtering, block matching 3D(BM3D) filtering and other denoising methods, which improves the peak signal-to-noise ratio of the traditional method effectively. Among them, NLM filtering and BM3D filtering have the most obvious effects on improving the denoising performance. The iterative guided filtering and BM3D filtering are fused, and the denoised images are initially obtained through BM3D filtering to obtain residual data. The iterative guided filtering is used to process the residual data. While improving the image denoising effect, the image detail characteristics are well preserved. The iterative guided filtering and BM3D filtering fusion method are used for coal gangue yard identification and landslide area edge recognition in remote sensing images of mining areas, and good results have been achieved.