基于广域电流暂态分量的井下供电系统接地故障区段定位方法

Underground power supply system grounding fault section positioning method based on wide-area current transient component

  • 摘要: 目前针对煤矿井下供电系统接地故障定位的研究大都采用暂态法,该方法需要同时采集线路的零序电压及零序电流,由于零序电压难以准确采集,在故障区段定位时易将正常运行区段误判为故障运行区段,从而发生越级跳闸现象。而目前针对井下供电系统越级跳闸的保护方案存在不适用于中性点经消弧线圈接地系统、造价较高等问题。针对上述问题,提出了一种基于广域电流暂态分量的井下供电系统接地故障区段定位方法。煤矿井下供电系统发生接地故障时,流经正常线路和故障线路的零序电流方向不同,采用数学形态学中的闭合开度差运算(CODO)提取各个线路的暂态零序电流的方向信息。针对CODO中结构元素长度的选择对于井下供电系统输出结果的好坏起决定性作用,采用粒子群优化(PSO)算法对结构元素长度进行自适应优化,实现接地故障暂态零序电流方向极性特征的可靠提取。基于多级供电系统的拓扑结构,对各条线路上保护元件输出的零序电流暂态分量极性信号进行逻辑运算,当取值为1时,表明该线路为正常运行线路,当取值为0时,表明该线路为故障线路,实现故障区段精确定位。基于中性点不接地系统及中性点经消弧线圈接地系统对该定位方法进行验证,结果表明:基于广域电流暂态分量的井下供电系统接地故障区段定位方法只需要采集零序电流就能在中性点不接地和中性点经消弧线圈接地的运行方式下准确定位故障区段。

     

    Abstract: At present, most of the research on underground power supply system grounding fault positioning in coal mine adopts the transient method, which needs to collect zero sequence voltage and zero sequence current of the line at the same time. Because it is difficult to collect zero sequence voltage accurately, it is easy to misjudge the normal operation section as the fault operation section when positioning the fault section, resulting in leapfrog tripping phenomenon. However, the current protection scheme for leapfrog tripping of underground power supply system is not suitable for neutral grounded system through arc suppression coil, and the cost is relatively high. In order to solve those problems, this paper presents an underground power supply system grounding fault section positioning method based on wide-area current transient component. When grounding fault occurs in underground power supply system of coal mine, the direction of zero-sequence current flowing through normal line and fault line is different. The closing opening difference operation (CODO) in mathematical morphology is used to extract the direction information of transient zero-sequence current of each line. The selection of structural element length in COCD plays a decisive role in the output of underground power supply system. The particle swarm optimization (PSO) algorithm is used to adaptively optimize the length of structural element, and the reliable extraction of polarity characteristics of grounding fault transient zero sequence current direction is realized. Based on the topology of multi-level power supply system, the polarity signals of the zero sequence current transient component output by the protection elements on each line are logically calculated. When the value is 1, the line is a normal operation line, and when the value is 0, the line is a fault line. Therefore, the precise positioning of the fault section is realized. Based on the neutral ungrounded system and the neutral grounded system through arc suppression coil, the positioning method is verified. The results show that the underground power supply system grounding fault section positioning method based on wide-area current transient component only needs to collect the zero-sequence current, and the method can achieve accurate positioning of the fault section in the operation mode of the neutral ungrounded and the neutral grounded through the arc suppression coil.

     

/

返回文章
返回