突出薄煤层中间巷掩护掘进消突技术研究

张楠, 徐九洲, 邱黎明

张楠,徐九洲,邱黎明. 突出薄煤层中间巷掩护掘进消突技术研究[J]. 工矿自动化,2022,48(3):40-46. DOI: 10.13272/j.issn.1671-251x.2021090023
引用本文: 张楠,徐九洲,邱黎明. 突出薄煤层中间巷掩护掘进消突技术研究[J]. 工矿自动化,2022,48(3):40-46. DOI: 10.13272/j.issn.1671-251x.2021090023
ZHANG Nan, XU Jiuzhou, QIU Liming. Research on outburst elimination technology of shield tunneling in middle roadway of outburst thin coal seam[J]. Journal of Mine Automation,2022,48(3):40-46. DOI: 10.13272/j.issn.1671-251x.2021090023
Citation: ZHANG Nan, XU Jiuzhou, QIU Liming. Research on outburst elimination technology of shield tunneling in middle roadway of outburst thin coal seam[J]. Journal of Mine Automation,2022,48(3):40-46. DOI: 10.13272/j.issn.1671-251x.2021090023

突出薄煤层中间巷掩护掘进消突技术研究

基金项目: 国家自然科学基金项目(52004016);2021年度贵州省科技支撑计划项目(黔科合支撑 〔2021〕 515);山东省重大科技创新工程项目(2019SDZY02)。
详细信息
    作者简介:

    张楠(1987-),男,河南永城人,工程师,主要研究方向为矿井瓦斯灾害防治技术,E-mail:598018449@qq.com

    通讯作者:

    邱黎明(1991-),男,河南周口人,讲师,硕士研究生导师,主要研究方向为煤岩动力灾害防治与监测预警,E-mail:qiulm@ustb.edu.cn

  • 中图分类号: TD713

Research on outburst elimination technology of shield tunneling in middle roadway of outburst thin coal seam

  • 摘要: 为了解决薄煤层煤与瓦斯突出防治困难的问题,分析了薄煤层中有效抽采区域分布特征:由于受薄煤层厚度的限制,瓦斯抽采有效区域在垂直方向的扩展受阻,更倾向于在水平方向延伸,导致水平方向的有效抽采半径远大于煤层厚度,有效抽采区域呈椭圆形分布,瓦斯渗流场主要集中在煤层走向和倾向上。根据该特征,指出基于本煤层抽采方式的中间巷掩护掘进消突技术能使抽采区域连成一片,更适用于薄煤层瓦斯抽采。分析了将中间巷掩护掘进消突技术应用于薄煤层中进行分块消突的优势和技术原理:采用沿空留巷技术将上一工作面的回风巷作为下一工作面的进风巷;在进风巷向前施工瓦斯抽采钻孔,抽采范围覆盖并超前预定的中间巷20 m以上,通过瓦斯抽采消除中间巷的突出危险性;掘进中间巷;在中间巷向回风巷预定位置施工瓦斯抽采钻孔,抽采范围覆盖并超前预定的回风巷20 m以上,通过瓦斯抽采消除中间巷的突出危险性;最后对回风巷进行掘进,形成回采工作面。以某矿9305工作面薄煤层为研究对象进行数值模拟,结果表明:在抽采时间为10 d和30 d之间,有效抽采半径的增加幅度最大,随着抽采时间增加,有效抽采范围的增加幅度逐渐减小;钻孔间距为3 m时,两钻孔之间的有效抽采半径几乎相切,抽采效果最佳,抽采压力基本可以使大部分煤层瓦斯有效扩散、解析、被动抽采;对中间巷的瓦斯抽采有效降低了回风巷和递进中间巷区域之间的瓦斯压力。现场实测结果表明:9305工作面突出煤层中间巷掩护掘进的最优抽采钻孔间距为3 m,孔径为94 mm,有效抽采直径不超过5 m,钻孔深度为107 m;中间巷掩护掘进消突技术使得薄煤层瓦斯体积分数下降约70%,消突效果显著。
    Abstract: In order to solve the problem of difficult prevention and control of coal and gas outburst in thin coal seam, the distribution characteristics of effective extraction area in thin coal seam are analyzed. Due to the limitation of the thickness of the thin coal seam, the expansion of the effective gas extraction area in the vertical direction is hindered, and it tends to extend in the horizontal direction, resulting in the effective extraction radius in the horizontal direction is much larger than the thickness of the coal seam. The effective extraction area is elliptically distributed. The gas seepage field mainly focuses on the direction and inclination of the coal seam. According to the characteristics, it is pointed out that the outburst elimination technology of shield tunneling in middle roadway based on the coal seam extraction mode can make the extraction area connected together. The technology is more suitable for gas extraction in thin coal seam. This paper analyzes the advantages and technical principles of applying the outburst elimination technology of shield tunneling in the middle roadway to block outburst elimination in thin coal seam. The gob-side entry retaining technology is adopted to make the return airway roadway of the previous working face as the air inlet roadway of the next working face. The gas extraction boreholes are constructed ahead of the air inlet roadway, and the extraction range covers and exceeds the predetermined middle roadway by more than 20 m. The gas extraction is used to eliminate the outburst danger of the middle roadway. tunneling the middle roadway. The gas extraction boreholes are constructed at the predetermined position in the middle roadway to the return airway roadway, and the extraction range covers and exceeds the predetermined return airway roadway by more than 20 m. The gas extraction is used to eliminate the outburst danger of the middle roadway. Finally, the return airway roadway is excavated to form the working face. Taking the thin coal seam of 9305 working face of a mine as the research object, the numerical simulation is carried out. The results show that when the extraction time is between 10 d and 30 d, the increase of the effective extraction radius is the largest. With the increase of the extraction time, the increase of the effective extraction range gradually decreases. When the borehole spacing is 3 m, the effective extraction radius between the two holes is almost tangent, and the extraction effect is the best. The extraction pressure can basically make most of the coal seam gas to be effectively diffused, resolved and passively extracted. The gas extraction in the middle roadway reduces the gas pressure between the return airway roadway and the progressive middle roadway area effectively. The field measurement results show that the optimal extraction borehole spacing for shield tunneling in the middle roadway of outburst coal seam in 9305 working face is 3 m, the borehole diameter is 94 mm, the effective extraction diameter is not more than 5 m, and the drilling depth is 107 m. The outburst elimination technology of shield tunneling in middle roadway reduces the gas volume fraction of the thin coal seam by about 70%, and the outburst elimination effect is remarkable.
  • 图  1   普通煤层中的有效抽采半径

    Figure  1.   Effective drainage radius in common coal seam

    图  2   薄煤层中的有效抽采半径

    Figure  2.   Effective drainage radius in thin coal seam

    图  3   薄煤层中间巷抽采钻孔布置

    Figure  3.   Layout of extraction boreholes in middle roadway of thin coal seam

    图  4   薄煤层瓦斯抽采模型

    Figure  4.   Gas drainage model of thin coal seam

    图  5   不同抽采时间下薄煤层瓦斯压力分布

    Figure  5.   Gas pressure distribution in thin coal seams under different extraction time

    图  6   不同钻孔间距下薄煤层瓦斯压力分布

    Figure  6.   Gas pressure distribution in thin coal seam under different borehole spacing

    图  7   瓦斯压力三维分布切片

    Figure  7.   Three dimensional distribution slices of gas pressure

    图  8   9305工作面中间巷递进掩护掘进消突方案

    Figure  8.   The scheme of outburst elimination of progressive shield tunneling in middle roadway of 9305 working face

    图  9   回风巷本煤层抽采瓦斯体积分数变化

    Figure  9.   Variation of volume fraction of gas extracted from coal seam in return airway

    表  1   主要物理参数

    Table  1   Main physical parameters

    名称数值
    初始瓦斯压力/MPa1.75
    灰分/%9.8
    吸附常数a/(m3·t−1)27.248
    吸附常数b/(MPa−1)1.12
    孔隙率/%5
    透气性系数/(m2·MPa−2·d−1)0.778
    瓦斯动力黏度/(Pa·s)1.84×10−5
    煤层密度/(t·m−3)1400
    透气率/m23.8×10−15
    水分/%1.5
    下载: 导出CSV
  • [1] 袁亮,姜耀东,何学秋,等. 煤矿典型动力灾害风险精准判识及监控预警关键技术研究进展[J]. 煤炭学报,2018,43(2):306-318.

    YUAN Liang,JIANG Yaodong,HE Xueqiu,et al. Research progress of precise risk accurate identification and monitoring early warning on typical dynamic disasters in coal mine[J]. Journal of China Coal Society,2018,43(2):306-318.

    [2] 何学秋,王安虎,窦林名,等. 突出危险煤层微震区域动态监测技术[J]. 煤炭学报,2018,43(11):3122-3129.

    HE Xueqiu,WANG Anhu,DOU Linming,et al. Technology of microseismic dynamic monitoring on coal and gas outburst-prone zone[J]. Journal of China Coal Society,2018,43(11):3122-3129.

    [3] 邱黎明,李忠辉,王恩元,等. 煤与瓦斯突出远程智能监测预警系统研究[J]. 工矿自动化,2018,44(1):17-21.

    QIU Liming,LI Zhonghui,WANG Enyuan,et al. Research on remote intelligent monitoring and early warning system for coal and gas outburst[J]. Industry and Mine Automation,2018,44(1):17-21.

    [4] 涂敏,付宝杰. 关键层结构对保护层卸压开采效应影响分析[J]. 采矿与安全工程学报,2011,28(4):536-541. DOI: 10.3969/j.issn.1673-3363.2011.04.007

    TU Min,FU Baojie. Analysis of the effect of key strata structure on relief-pressure mining in protective seam[J]. Journal of Mining & Safety Engineering,2011,28(4):536-541. DOI: 10.3969/j.issn.1673-3363.2011.04.007

    [5] 段培磊. 底抽巷瓦斯抽采技术应用及效果分析[J]. 山西冶金,2020,43(6):161-162.

    DUAN Peilei. Application and effect analysis of gas drainage technology in bottom drainage roadway[J]. Shanxi Metallurgy,2020,43(6):161-162.

    [6] 成艳英. 本煤层钻孔瓦斯抽采失效机制及高效密封技术研究[D]. 徐州: 中国矿业大学, 2014.

    CHENG Yanying. Research on failure mechanisms of gas drainage through drilling in coal seam and efficient sealing technology[D]. Xuzhou: China University of Mining and Technology, 2014.

    [7] 王海锋,方亮,程远平,等. 基于岩层移动的下邻近层卸压瓦斯抽采及应用[J]. 采矿与安全工程学报,2013,30(1):128-131.

    WANG Haifeng,FANG Liang,CHENG Yuanping,et al. Pressure-relief gas extraction of lower adjacent coal seam based on strata movement and its application[J]. Journal of Mining & Safety Engineering,2013,30(1):128-131.

    [8] 闫立章,路占元,刘奉明. 特厚煤层群保护层开采与瓦斯预抽采防突技术的实践[J]. 煤炭技术,2009,28(11):70-72.

    YAN Lizhang,LU Zhanyuan,LIU Fengming. Practice of mining protective seam in thick coal seam group and methane pre-extracted to prevent methane and coal outburst[J]. Coal Technology,2009,28(11):70-72.

    [9] 晋康华,刘明举,毛振彬,等. 水力冲孔卸压增透区域消突技术应用[J]. 煤炭工程,2010,42(3):50-52. DOI: 10.3969/j.issn.1671-0959.2010.03.021

    JIN Kanghua,LIU Mingju,MAO Zhenbin,et al. Application of area outburst elimination through hydraulic flushing technology leading to stress releasing and airpermeability increasing[J]. Coal Engineering,2010,42(3):50-52. DOI: 10.3969/j.issn.1671-0959.2010.03.021

    [10] 李永海,徐春明,郑奎全. 水力采煤技术的应用与发展趋势[J]. 水力采煤与管道运输,2011(4):11-13.

    LI Yonghai,XU Chunming,ZHENG Kuiquan. Application and development trend of hydraulic coal mining technology[J]. Hydraulic Coal Mining & Pipeline Transportation,2011(4):11-13.

    [11] 袁亮. 卸压开采抽采瓦斯理论及煤与瓦斯共采技术体系[J]. 煤炭学报,2009,34(1):1-8. DOI: 10.3321/j.issn:0253-9993.2009.01.001

    YUAN Liang. Theory of pressure-relieved gas extraction and technique system of integrated coal production and gas extraction[J]. Journal of China Coal Society,2009,34(1):1-8. DOI: 10.3321/j.issn:0253-9993.2009.01.001

    [12] 袁亮,薛生. 煤层瓦斯含量法确定保护层开采消突范围的技术及应用[J]. 煤炭学报,2014,39(9):1786-1791.

    YUAN Liang,XUE Sheng. Defining outburst-free zones in protective mining with seam gas content-method and application[J]. Journal of China Coal Society,2014,39(9):1786-1791.

    [13] 樊晓光. “中间巷”在突出煤层回采工作面的应用分析[J]. 机械管理开发,2020,35(5):126-127.

    FAN Xiaoguang. Application and analysis of 'middle lane' in mining face of outstanding coal seam[J]. Mechanical Management and Development,2020,35(5):126-127.

    [14] 闫英俊,苗六县. 递进掩护式煤巷掘进技术研究[J]. 中州煤炭,2009(12):5-6. DOI: 10.3969/j.issn.1003-0506.2009.12.002

    YAN Yingjun,MIAO Liuxian. Research on technology of progressive shielding coal lane driving[J]. Zhongzhou Coal,2009(12):5-6. DOI: 10.3969/j.issn.1003-0506.2009.12.002

    [15] 高强. 高应力深部矿井厚煤层孤岛工作面中间巷卸压研究[J]. 低碳世界,2016(21):70-71.

    GAO Qiang. Study on pressure relief of middle roadway in island working face of thick coal seam in high stress deep mine[J]. Low Carbon World,2016(21):70-71.

    [16] 徐宁,程仁辉. 余吾煤业瓦斯抽采钻孔合理间距研究[J]. 煤炭科技,2020,41(5):116-120. DOI: 10.3969/j.issn.1008-3731.2020.05.036

    XU Ning,CHENG Renhui. Research on reasonable spacing of gas drainage boreholes in Yuwu Coal Mine[J]. Coal Science & Technology Magazine,2020,41(5):116-120. DOI: 10.3969/j.issn.1008-3731.2020.05.036

    [17] 陈学习, 王志亮. 矿井瓦斯防治与利用[M]. 徐州: 中国矿业大学出版社, 2014.

    CHEN Xuexi, WANG Zhiliang. Mine gas prevention and utilization[M]. Xuzhou: China University of Mining and Technology Press, 2014.

    [18] 王振亚. 钻孔直径与预抽瓦斯效果关系研究[D]. 焦作: 河南理工大学, 2012.

    WANG Zhenya. Research on the relationship between the diameter of drilling and the effect of gas drainage[D]. Jiaozuo: Henan Polytechnic University, 2012.

  • 期刊类型引用(6)

    1. 侯博. 硬岩桩基成孔技术研究. 凿岩机械气动工具. 2025(01): 147-149 . 百度学术
    2. 陈立新,付玉平,李川田. 多煤层重复采动条件下大巷底鼓破坏规律研究. 能源与节能. 2025(02): 59-63 . 百度学术
    3. 刘静波. 重复采动下采场围岩应力响应特征研究. 山东煤炭科技. 2024(09): 112-116+127 . 百度学术
    4. 解嘉豪,崔峰,韩刚,苌玉,刘虎,郝晓琦. 深埋煤层临空面开采覆岩结构失稳机理与防治技术. 西安科技大学学报. 2024(06): 1050-1059 . 百度学术
    5. 王雪江,陈虎斌. 开拓煤业兼并重组原主扇匹配性分析及主扇选型研究. 当代化工研究. 2022(13): 80-82 . 百度学术
    6. 冯超. 矿井通风系统优化及主扇改造技术研究. 当代化工研究. 2022(19): 176-178 . 百度学术

    其他类型引用(5)

图(9)  /  表(1)
计量
  • 文章访问数:  211
  • HTML全文浏览量:  46
  • PDF下载量:  17
  • 被引次数: 11
出版历程
  • 收稿日期:  2021-09-06
  • 修回日期:  2022-03-11
  • 网络出版日期:  2022-03-14
  • 刊出日期:  2022-03-25

目录

    /

    返回文章
    返回