Fault diagnosis of rolling bearings based on GAF and DenseNet
-
摘要: 基于模型和基于信号的滚动轴承故障诊断方法存在建模困难、信号分析较繁琐等问题;基于数据驱动的滚动轴承故障诊断方法多采用卷积神经网络,但网络训练时随着网络层数增多会出现梯度消失问题,且将滚动轴承振动信号直接作为网络输入会造成特征提取不全。针对上述问题,提出了一种基于格拉姆角场(GAF)与密集连接卷积网络(DenseNet)的滚动轴承故障诊断方法。将滚动轴承振动信号一维时间序列通过GAF转换为二维图像,保留了时间序列数据之间的相关信息;将二维图像作为DenseNet的输入,通过DenseNet对二维图像进行特征提取,提升了特征信息利用率,进而实现故障分类。采用凯斯西储大学轴承数据集上的数据进行实验,结果表明,该方法能有效识别滚动轴承故障类型,故障诊断准确率达99.75%。为进一步证明该方法的优越性,选取灰度图+DenseNet、GAF+残差网络(ResNet)、灰度图+ResNet故障诊断方法进行对比,结果表明:GAF+DenseNet方法准确率最高,灰度图+ResNet方法准确率最低;经过GAF转换的二维图像与灰度图相比,保留了原始时间序列数据之间的相关信息;与ResNet相比,DenseNet由于采取更加密集的连接方式,能够更充分地提取故障特征。Abstract: The model-based and signal-based rolling bearing fault diagnosis methods have problems such as difficult modeling and cumbersome signal analysis. The data-driven rolling bearing fault diagnosis methods mostly use convolutional neural networks, but as the number of network layers increases during network training, gradient disappearance occurs. Moreover, taking the vibration signal of the rolling bearing directly as the network input will cause incomplete feature extraction. In order to solve the above problems, a rolling bearing fault diagnosis method based on Gramian angular field(GAF) and densely connected convolutional network(DenseNet) is proposed. The one-dimensional time series of rolling bearing vibration signals are converted into two-dimensional images by GAF, which preserves the correlation information between the time series data. The two-dimensional images are used as the input of the densely connected convolutional network, and the feature extraction of the two-dimensional images is carried out by the DenseNet, which improves the feature information utilization and realizes the fault classification. Experiments are carried out by using the data from the Case Western Reserve University bearing dataset. The results show that the method can identify rolling bearing fault types effectively with a fault diagnosis accuracy rate of 99.75%. In order to further prove the superiority of this method, the fault diagnosis methods of gray-scale image+DenseNet, GAF+residual network(ResNet), gray-scale image + ResNet are selected for comparison. The results show that the GAF+DenseNet method has the highest accuracy rate, and the gray-scale image+ResNet method has the lowest accuracy rate. Compared with the gray-scale image, the GAF converted two-dimensional image retains the relevant information between the original time series data. Compared with ResNet, DenseNet is able to extract the fault features more adequately due to denser connection method.
-
-
期刊类型引用(8)
1. 张天缘,孙虎儿,朱继扬,赵扬. 基于SDP和改进SAM-MobileNetv2的滚动轴承故障诊断方法研究. 机械强度. 2024(04): 787-794 . 百度学术 2. 董瑞佳. 基于迁移学习和DenseNet的带式输送机托辊故障检测方法. 煤炭技术. 2023(01): 250-252 . 百度学术 3. 武煜坤,宁少慧,任永磊,王延松. 基于G-YOLO网络的滚动轴承故障诊断方法. 噪声与振动控制. 2023(05): 161-166 . 百度学术 4. 李喆,吐松江·卡日,范想,范志鹏,万容齐,白新悦,吴俣潼. 基于双图转换和融合CRNN网络的轴承故障诊断. 振动与冲击. 2023(19): 240-248 . 百度学术 5. 孙晓春,丁华,牛锐祥,王焱. 基于LW-DenseNet的采煤机摇臂齿轮故障诊断. 煤炭工程. 2023(11): 186-192 . 百度学术 6. 陶迎雪,杜艳平,窦水海,王兆华,白慧娟,孙兆永. 基于频率通道注意力机制和DenseNet45模型的齿轮故障诊断方法. 印刷与数字媒体技术研究. 2023(06): 38-48 . 百度学术 7. 吴冬梅,王福齐,李贤功,唐润,张新建. 轴承智能故障诊断. 工矿自动化. 2022(09): 49-55 . 本站查看 8. 姜家国,郭曼利. 基于MTF和DenseNet的滚动轴承故障诊断方法. 工矿自动化. 2022(09): 63-68 . 本站查看 其他类型引用(10)
计量
- 文章访问数: 206
- HTML全文浏览量: 19
- PDF下载量: 22
- 被引次数: 18