基于EMD特征提取与随机森林的煤矸识别方法

窦希杰, 王世博, 刘后广, 陈钱有, 邹文才, 卢召栋

窦希杰,王世博,刘后广,等.基于EMD特征提取与随机森林的煤矸识别方法[J].工矿自动化,2021,47(3):60-65.. DOI: 10.13272/j.issn.1671-251x.2020100038
引用本文: 窦希杰,王世博,刘后广,等.基于EMD特征提取与随机森林的煤矸识别方法[J].工矿自动化,2021,47(3):60-65.. DOI: 10.13272/j.issn.1671-251x.2020100038
DOU Xijie, WANG Shibo, LIU Houguang, CHEN Qianyou, ZOU Wencai, LU Zhaodong . Coal and gangue identification method based on EMD feature extraction and random forest[J]. Journal of Mine Automation, 2021, 47(3): 60-65. DOI: 10.13272/j.issn.1671-251x.2020100038
Citation: DOU Xijie, WANG Shibo, LIU Houguang, CHEN Qianyou, ZOU Wencai, LU Zhaodong . Coal and gangue identification method based on EMD feature extraction and random forest[J]. Journal of Mine Automation, 2021, 47(3): 60-65. DOI: 10.13272/j.issn.1671-251x.2020100038

基于EMD特征提取与随机森林的煤矸识别方法

基金项目: 

国家重点研发计划资助项目(2018YFC0604503)

江苏高校优势学科建设工程资助项目(PAPD)

详细信息
  • 中图分类号: TD821

Coal and gangue identification method based on EMD feature extraction and random forest

  • 摘要: 基于振动信号辨识是实现综放开采煤矸识别的有效手段,现有方法在识别准确性和有效性方面有待进一步研究。提出了一种基于经验模态分解(EMD)特征提取与随机森林(RF)的煤矸识别方法。采用加速度传感器及数据采集仪采集了某综放工作面煤和矸石冲击液压支架尾梁产生的振动信号,分别对2种信号进行EMD,得到一系列本征模态函数(IMF);根据EMD结果选取有效IMF,分别提取IMF能量、峭度、矩阵奇异值及对应熵作为特征向量,采用各特征向量独立训练RF模型,根据各RF模型对测试样本的识别结果筛选特征向量,并建立特征数据集;采用特征数据集训练RF模型,采用训练好的RF模型实现煤矸识别。测试结果表明:该方法对200组煤矸测试样本的识别准确率达96.5%,且当RF模型中决策树数量设置为100或150时识别准确率最高,对测试样本进行特征提取与识别的耗时不超过0.2 s,满足综放工作面煤矸识别准确性和实时性要求。
    Abstract: Identification based on vibration signals is an effective method to realize coal and gangue identification in fully mechanized mining. The existing method needs to be further studied in terms of identification accuracy and effectiveness. A coal and gangue identification method based on empirical mode decomposition(EMD) feature extraction and random forest(RF) is proposed in this study. The acceleration sensor and data acquisition instrument are used to collect the vibration signals generated by the impact of coal and gangue on the tail beam of the hydraulic support in a fully mechanized working face. Then the two signals are processed by EMD respectively so as to obtain a series of intrinsic mode functions(IMF). The effective IMFs are selected according to the EMD results, and the IMF energy, kurtosis, matrix singular values and corresponding entropy are extracted as feature vectors. Each feature vector is used to train the RF model independently. The feature vectors are filtered according to the identification results of each RF model on the test samples, and the feature data set is established. The feature data set is used to train the RF model, and the trained RF model is applied to realize the coal and gangue identification. The test results show that the identification accuracy of the method reaches 96.5% for 200 sets of coal and gangue test samples, and the highest identification accuracy is achieved when the number of decision trees in the RF model is set to 100 or 150. Furthermore, the time consumed for feature extraction and identification of test samples is less than 0.2 s, which meets the requirements of accuracy and real time of coal and gangue identification in fully mechanized working face.
  • 期刊类型引用(16)

    1. 宋庆军,焦守悦,姜海燕,宋庆辉,郝文超. 基于改进EfficientNet的煤矸音频分类方法. 工矿自动化. 2025(01): 138-144 . 本站查看
    2. 燕建华. 周期性冲击波形匹配下选煤破碎机滚动轴承局部缺陷检测. 自动化与仪器仪表. 2025(02): 37-41 . 百度学术
    3. 上官星驰,张晓良,刘朝,石会,王嘉宇. 基于改进特征提取算法及胶囊网络的设备故障诊断研究. 工矿自动化. 2024(S1): 146-150 . 本站查看
    4. 范忠明. 基于神经网络图像识别技术的放顶煤煤矸自动识别方法. 自动化技术与应用. 2024(10): 39-42 . 百度学术
    5. 王志峰,王家臣,李良晖,安博超. 基于DeepLab v3+的综放工作面含矸率预测研究. 工矿自动化. 2024(10): 90-96 . 本站查看
    6. 李立宝,袁永,秦正寒,李波,闫政天,李勇. 图像特征与振动频谱多源融合驱动的煤矸识别技术研究. 工矿自动化. 2024(11): 43-51 . 本站查看
    7. 周正南,刘美,吴斌鑫,莫常春,高兴泉,张斐. 基于改进的CEEMDAN与关联维数的石化轴承故障特征提取. 机床与液压. 2023(05): 212-217 . 百度学术
    8. 司垒,李嘉豪,邢峰,魏东,戴剑博,王忠宾. 不同煤矸混合物的微波传播特性试验研究. 煤炭科学技术. 2023(05): 219-231 . 百度学术
    9. 石港,雷志鹏. 基于改进深度森林的采煤机拖拽电缆挤压力识别方法. 工矿自动化. 2023(10): 8-16+51 . 本站查看
    10. 史翔予,司垒,王忠宾,魏东,顾进恒. 基于改进双向峰-谷搜索算法的煤矸模型电磁波正演模拟. 工矿自动化. 2023(10): 87-95 . 本站查看
    11. 李春锋,马星河,刘广朋. 基于改进VMD的矿用电缆局放信号降噪方法. 能源与环保. 2023(12): 268-274 . 百度学术
    12. 贺海涛,王佳豪,张海峰,荣耀,崔耀. 基于U-Net的放煤状态控制关键技术研究. 煤炭科学技术. 2022(S2): 237-243 . 百度学术
    13. 高丰,朱少成,罗石. 基于改进的经验模态分解的后视镜驱动器故障诊断方法. 河南科技大学学报(自然科学版). 2021(06): 39-45+6-7 . 百度学术
    14. 刘丹丹. 基于EMD的GNSS时间序列异常值探测算法. 地球物理学进展. 2021(05): 1865-1873 . 百度学术
    15. 丁震,常博深. 面向煤矸识别的近红外反射光谱数据预处理方法. 工矿自动化. 2021(12): 93-97 . 本站查看
    16. 田志飞,洪盛勇. 火力发电厂煤流状态实时监测方法的研究及应用. 电力学报. 2021(06): 564-572 . 百度学术

    其他类型引用(14)

计量
  • 文章访问数:  257
  • HTML全文浏览量:  28
  • PDF下载量:  37
  • 被引次数: 30
出版历程
  • 刊出日期:  2021-03-19

目录

    /

    返回文章
    返回