Aging indexes analysis of explosion-proof lithium battery based on incremental capacity method
-
摘要: 现有防爆锂电池矿用机车电池管理系统中电池健康状态仅用于预测电池剩余使用寿命,不对电池老化原因进行分析,对电池维护缺乏指导意义。针对该问题,首先分析了导致锂电池老化的内部因素,即锂离子损耗、活性物质溶解、内阻增加;然后基于容量增量法原理,提出了一种防爆锂电池老化指标分析方法,根据锂电池容量增量曲线高度和横向位置分别对锂离子损耗、活性物质溶解、内阻增加导致的锂电池老化进行量化分析,得出了相应的老化指标;最后介绍了电池管理系统中计算锂电池容量增量和确定容量增量曲线峰谷点的方法。采用电池充放电试验分析了充放电次数和充放电倍率对电池老化的影响:防爆锂电池以较小充放电倍率操作时,随着充放电次数增加,锂电池老化主要为锂离子损耗和活性物质溶解导致的老化;增大电池充放电倍率对内阻增加导致的电池老化影响最大。该方法有助于防爆锂电池管理系统更准确地估算电池健康状态,并为电池维护和电池管理系统的参数设定提供依据。Abstract: State of health(SOH) in existing battery management system(BMS) for mine-used locomotive powered by explosion-proof lithium battery is only used to predict remaining service life of the battery, but not for cause analysis of battery aging, which has no guiding significance for battery maintenance. In order to solve the problem, internal factors leading to lithium battery aging were analyzed firstly that were lithium ion loss, dissolution of active substances and increase of internal resistance. Then an aging indexes analysis method of explosion-proof lithium battery was proposed which was based on incremental capacity(IC) method. According to height and transverse position of IC curve of lithium battery, lithium battery aging caused by lithium ion loss, dissolution of active substances and increase of internal resistance were analyzed quantitatively to obtain corresponding aging indexes. Finally, methods of calculating lithium battery IC and determining peak and valley of IC curve in BMS were introduced. The influences of charge and discharge number and charge and discharge ratio on battery aging were analyzed by battery charge and discharge tests The test results show that with increase of charge and discharge number, explosion-proof lithium battery aging is mainly caused by loss of lithium ion and dissolution of active substances when it is operated with a small charge and discharge ratio. Increasing charge and discharge ratio of the battery has the greatest influence on battery aging caused by increase of internal resistance. The method is good for BMS of explosion-proof lithium battery to estimate SOH more correctly and can provide basis for battery maintenance and BMS parameters setting.
-
-
期刊类型引用(12)
1. 葛志刚,王来斌,宋子琦. 临涣煤矿八采区10煤层构造复杂程度评价. 河南科技. 2025(01): 37-43 . 百度学术
2. 李峰,贺延军,冯英,马锐,史康,郭晨. 延安芦村二号煤矿薄煤层构造与煤厚稳定性定量评价. 西北地质. 2025(02): 261-273 . 百度学术
3. 杨祎超,徐宏杰,刘会虎,卢宏伟,刘瑜,祝月,詹北淮. 芦岭煤矿10号煤层瓦斯赋存及其控制因素综合评价. 煤矿安全. 2024(02): 27-34 . 百度学术
4. 汪伟民,郝红俊,翟晓荣,程龙艺,汪蒙,庞瑶. 基于改进AHP-独立性权系数法的地质构造复杂程度定量评价. 煤炭技术. 2024(04): 119-124 . 百度学术
5. 兰天伟,王顺翔,张满仓,李柱,吴国强,房平,路凯翔,刘永豪,唐小富. 矿井断裂构造分形特征及其对冲击地压影响的研究. 工矿自动化. 2024(10): 112-119 . 本站查看
6. 郭强,成文举,杨廷军,王印,唐汝倩,张呈伟,徐国梁,尹会永. 基于博弈论组合赋权的断层定量评价模型及应用. 煤矿安全. 2023(06): 199-206 . 百度学术
7. 施龙青,赵威,刘天浩,翟培合,王钊,吕昌兴. 煤矿井田构造复杂程度定量评价研究. 煤炭工程. 2022(08): 142-148 . 百度学术
8. 蔡益栋,高国森,刘大锰,邱峰. 鄂尔多斯盆地东缘临兴中区煤系气富集地质条件及成藏模式. 天然气工业. 2022(11): 25-36 . 百度学术
9. 左林霄,高鹏,冯栋,王晓玮,侯恩科. 基于AHP-熵权法耦合方法的地质构造复杂程度定量评价. 煤炭科学技术. 2022(11): 140-149 . 百度学术
10. 霍高普,薛喜成. 象山煤矿3号煤层地质构造复杂程度定量评价. 中国煤炭地质. 2022(12): 1-6 . 百度学术
11. 冀前辉,郝世俊,王程,刘卫卫. 复合勘探技术在煤矿工作面水害防治中的应用. 工矿自动化. 2020(03): 79-83 . 本站查看
12. 曹代勇,占文锋,李焕同,李小明,刘德民,魏迎春. 中国煤矿动力地质灾害的构造背景与风险区带划分. 煤炭学报. 2020(07): 2376-2388 . 百度学术
其他类型引用(6)
计量
- 文章访问数: 91
- HTML全文浏览量: 21
- PDF下载量: 31
- 被引次数: 18