Conveyor belt tear detection method based on lion group optimization two-dimensional Otsu algorithm
-
摘要: 基于传统二维Otsu分割算法的输送带撕裂检测方法采用穷尽搜索式的阈值选取方式,图像分割时间长、实时性差,不能同时满足撕裂检测精度与速度要求。针对上述问题,提出了一种基于狮群优化二维Otsu算法的输送带撕裂检测方法。首先通过输送带撕裂检测装置采集输送带图像,采用中值滤波和直方图均衡化对采集到的图像进行去噪和增强处理,突出撕裂部位;然后采用狮群优化二维Otsu算法对预处理过的图像求取接近实际的分割阈值,用该阈值对输送带图像进行分割处理;最后通过计算分割后图像中黑色像素点的数量进行撕裂诊断。仿真结果表明,该方法比基于传统二维Otsu算法的检测方法寻优能力更强,输送带分割效果更好,可以准确地从输送带图像中分割出裂痕,撕裂识别的正确率为98.2%,提高效率的同时缩短了运行时间,可以满足输送带撕裂检测的准确性和实时性要求。
-
关键词:
- 输送带 /
- 撕裂检测 /
- 图像分割 /
- 分割阈值选取 /
- 狮群优化二维Otsu算法
Abstract: The conveyor belt tear detection methods based on traditional two-dimensional Otsu segmentation algorithm adopts threshold selection method of exhaustive search. The image segmentation has a long time and poor real-time performance, which cannot meet requirements of tear detection accuracy and speed at the same time. For the above problems, a conveyor belt tear detection method based on lion group optimization two-dimensional Otsu was proposed. Firstly, the conveyor belt image is collected by the conveyor belt tear detection device, median filtering and histogram equalization were used to denoise and enhance the collected image to highlight the torn part. Then, the close to actual segmentation threshold of preprocessed image is obtained by lion group optimization two-dimensional Otsu algorithm, and the conveyor image is segmented by this threshold. Finally, the tear diagnosis is performed by calculating the number of black pixels in the segmented image. The simulation results show that the optimization ability of proposed method is more powerful than the traditional two-dimensional Otsu algorithm, and segmentation effect of conveyor belt is better, the cracks can be accurately segmented from the conveyor belt image. The correct rate of tear recognition of the method is 98.2%, improves the efficiency and shortens the running time, which can meet the accuracy and real-time requirements of the conveyor belt tear detection. -
-
期刊类型引用(17)
1. 侯挺,聂谦,薛兴伟. 弱化转移高水平应力技术在巷道修护中的研究与应用. 山东煤炭科技. 2025(01): 12-16 . 百度学术
2. 陶志刚,许闯,李勇,王祥,王欢. 深埋高应力隧道软岩大变形开挖补偿控制研究. 西安科技大学学报. 2025(01): 86-97 . 百度学术
3. 陈晓轩,李彦斌,李立功. 高应力软岩巷道破坏特征及最佳支护技术研究. 煤炭技术. 2024(03): 36-41 . 百度学术
4. 吴少康,张俊文,徐佑林,宋治祥,张杨,范文兵,董续凯,张际涛,陈志松. 煤层群采动下围岩应力演化规律及协同控制技术研究. 煤炭科学技术. 2024(03): 24-37 . 百度学术
5. 刘凯峰. 回采巷道锚注加固超前支护技术研究. 能源与节能. 2024(04): 215-218 . 百度学术
6. 王浩,赵伟. 煤矿破碎围岩巷道支护机理和加固特性研究. 新疆钢铁. 2024(01): 40-42 . 百度学术
7. 高学丰,马丁,张晓东. 软岩巷道淋水区域顶板破坏特征及控制技术研究. 内蒙古煤炭经济. 2024(06): 19-21 . 百度学术
8. 谢贵峰,孙义迎,李震. 软岩巷道破坏机理及控制研究. 内蒙古煤炭经济. 2024(09): 64-66 . 百度学术
9. Peng-Fei Cui,De-Lei Shang,Peng Chu,Ju Li,Da-Li Sun,Tian-Yu Wang,Ming-Zhong Gao,He-Ping Xie. Optimal depth of in-situ pressure-preserved coring in coal seams considering roadway excavation and drilling disturbance. Petroleum Science. 2024(05): 3517-3534 . 必应学术
10. 赵瑞雪. 基于NPR锚索支护技术的软岩巷道变形控制研究. 采矿技术. 2024(06): 83-87 . 百度学术
11. 耿友明,卢宏建. 高应力大断面巷道围岩加固技术研究. 煤炭技术. 2023(04): 65-67 . 百度学术
12. 曹庆华,杨月飞,陈慧明,刘广伟. 深部沿空留巷超前锚索补强支护及数值模拟. 中国矿业. 2023(04): 133-139 . 百度学术
13. 孟梦,咸玉建. 考虑采空区围岩大变形规律的巷道稳定支护技术研究. 煤化工. 2023(06): 125-128+132 . 百度学术
14. 叶飞,严斌,张小宇. 巨厚煤层临空巷道大变形控制支护优化技术研究. 煤炭与化工. 2022(03): 45-47 . 百度学术
15. 虎晓宏. 开拓煤业含水岩层条件下31轨道巷支护技术研究. 煤. 2022(05): 60-63 . 百度学术
16. 刘延敏. 注浆加固技术在公路路基加固中的研究与应用. 交通世界. 2022(21): 159-161 . 百度学术
17. 杨鹏,马平,赵俊达. 高强度开采条件下煤炭巷道锚杆支护技术. 煤炭工程. 2022(S1): 44-48 . 百度学术
其他类型引用(9)
计量
- 文章访问数: 63
- HTML全文浏览量: 12
- PDF下载量: 22
- 被引次数: 26