基于主元特征融合和SVM的轴承剩余寿命预测

马海龙

马海龙.基于主元特征融合和SVM的轴承剩余寿命预测[J].工矿自动化,2019,45(8):74-78.. DOI: 10.13272/j.issn.1671-251x.2019010085
引用本文: 马海龙.基于主元特征融合和SVM的轴承剩余寿命预测[J].工矿自动化,2019,45(8):74-78.. DOI: 10.13272/j.issn.1671-251x.2019010085
MA Hailong. Bearing residual life prediction based on principal component feature fusion and SVM[J]. Journal of Mine Automation, 2019, 45(8): 74-78. DOI: 10.13272/j.issn.1671-251x.2019010085
Citation: MA Hailong. Bearing residual life prediction based on principal component feature fusion and SVM[J]. Journal of Mine Automation, 2019, 45(8): 74-78. DOI: 10.13272/j.issn.1671-251x.2019010085

基于主元特征融合和SVM的轴承剩余寿命预测

基金项目: 

中国煤炭科工集团有限公司科技创新创业资金专项资助项目(2018QN035)

天地科技股份有限公司科技创新创业资金专项资助项目(2018-TD-QN045)

详细信息
  • 中图分类号: TD67

Bearing residual life prediction based on principal component feature fusion and SVM

  • 摘要: 为解决采用单一特征量预测轴承剩余寿命误差较大、有限数据样本条件下轴承剩余寿命难以估算的问题,提出了一种基于主元特征融合和支持向量机(SVM)的轴承剩余寿命预测方法。该方法采集振动加速度信号构建数据样本,提取有效值、峰值、小波熵等表征轴承退化趋势的特征指标;采用主元分析融合多个特征指标,消除特征间的冗余和相关性,构造出相对多特征的退化特征量;将退化特征量输入SVM模型中进行轴承剩余寿命预测。现场工程应用结果表明,基于主元特征融合和SVM的轴承剩余寿命预测方法可在小样本条件下筛选出包含信号绝大部分信息的主元,从而在保证预测精度的同时,减少了计算量。
    Abstract: In order to solve the problem that using single feature quantity for bearing residual life prediction had large error and it was difficult to estimate bearing residual life under the condition of limited data samples, a bearing residual life prediction method based on principal component feature fusion and support vector machine(SVM) was proposed. This method collects data samples of vibration acceleration signals and extracts the characteristic indexes such as RMS, peak value and wavelet entropy to characterize the degradation trend of bearings. The principal component analysis is used to fuse multiple feature indexs to eliminate the redundancy and correlation between features, and construct regressive feature quantities with relative multi-feature; the regressive feature quantities are input into SVM model for bearing residual life prediction. The field engineering application results show that the bearing residual life prediction method based on principal component feature fusion and SVM can screen out the principal components which contain most of the information under small sample condition, thus reducing the calculation amount while ensuring the prediction accuracy.
  • 期刊类型引用(3)

    1. 高飞,曲志鹏,魏震,朱剑兵,程远锋. 基于机器学习方法的测井岩相分类研究. 地球物理学进展. 2024(03): 1173-1192 . 百度学术
    2. 郎君,刘亚武,葛军. 数学分析手段在煤矿岩性识别处理中的应用. 吕梁学院学报. 2022(02): 23-26 . 百度学术
    3. 姚克,李泉新,方俊,方鹏,王龙鹏,田东庄,陈龙,许超. 煤矿井下旋转地质导向钻进技术装备研究. 煤炭科学技术. 2022(12): 36-42 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  97
  • HTML全文浏览量:  9
  • PDF下载量:  13
  • 被引次数: 8
出版历程
  • 刊出日期:  2019-08-19

目录

    /

    返回文章
    返回