基于时间序列的瓦斯浓度动态预测

Dynamic prediction of gas concentration based on time series

  • 摘要: 现有瓦斯浓度预测方法只能实现瓦斯浓度的静态预测,不能随着瓦斯数据的累积而及时更新,从而导致预测结果不具有及时性。 针对该问题,提出了一种基于时间序列的瓦斯浓度动态预测方法。利用小波分解技术的多分辨率特性,将瓦斯浓度时间序列分解到不同尺度上,使时间序列平稳化;通过实时动态构建的自回归滑动平均(ARMA)模型,利用过去瓦斯浓度变化趋势预测未来一段时间的矿井瓦斯浓度值,得到时间序列预测结果;为提高瓦斯浓度预测精度,将ARMA模型的预测结果与矿井环境参数输入到训练好的BP神经网络模型中,通过BP神经网络模型对预测结果进行修正,从而获得最终的瓦斯浓度预测值。测试结果表明,该方法可对矿井瓦斯浓度进行准确预测,瓦斯体积分数预测平均相对误差从8%降低到了5%。

     

    Abstract: Existing gas concentration prediction methods could only achieve static gas concentration prediction, could not update with accumulation of gas data, as a result, the prediction results were not timeliness. In view of the above problem, a dynamic prediction method of gas concentration based on time series was proposed. Firstly, the method uses multi-resolution characteristic of wavelet decomposition technique to decompose the gas concentration time series to different scales to make the time series smooth. Then it adopts auto regressive and moving average(ARMA) model constructed by real-time and dynamic data to predict mine gas concentration in the future time by use of gas concentration change trend in the past time, so as to obtain time series prediction results. Finally, in order to improve the accuracy of the gas concentration prediction, the prediction results of the ARMA model and mine environment parameters are input into the trained BP neural network model, and the prediction results are corrected by the BP neural network model, so as to obtain final gas concentration prediction value. The test results show that the method can accurately predict the mine gas concentration, and the average relative error of gas concentration prediction is reduced from 8% to 5%.

     

/

返回文章
返回