Fault diagnosis method for rolling bearing of shearer based on HGWO-MSVM
-
摘要: 针对采煤机滚动轴承故障特征向量提取较困难、多分类效果不理想等问题,提出了基于HGWO-MSVM的采煤机轴承故障诊断方法。对轴承故障信号进行小波降噪处理,利用经验模态分解算法对降噪后信号进行分解,并提取能量特征值,作为MSVM的训练集和测试集。采用MSVM进行故障状态识别,并用HGWO算法对MSVM的参数进行优化。试验结果表明,相比于GWO、GA和PSO优化MSVM模型,基于HGWO-MSVM的采煤机轴承故障诊断模型可明显提高故障识别精度和效率。Abstract: In view of problems of difficult extracting of fault feature vector and unsatisfactory multi-classification effect of shearer rolling bearing, a fault diagnosis method for rolling bearing of shearer based on HGWO-MSVM was proposed. The bearing fault signal is denoised by wavelet and decomposed by empirical mode decomposition algorithm, then energy characteristic value is extracted and used as training set and test set of MSVM. The MSVM is used to identify fault status and parameters of MSVM are optimized by HGWO algorithm. The experimental results show that the fault diagnosis model of shearer bearing based on HGWO-MSVM can obviously improve accuracy and efficiency of fault identification compared with GWO, GA and PSO optimization MSVM model.
-
-
期刊类型引用(6)
1. 焦玉冰,李杰,马喜宏,郭肖亭,冯凯强. 一种采煤机截割部滚动轴承故障诊断方法. 计算机测量与控制. 2023(05): 73-79 . 百度学术
2. 孙晓春,丁华,牛锐祥,王焱. 基于LW-DenseNet的采煤机摇臂齿轮故障诊断. 煤炭工程. 2023(11): 186-192 . 百度学术
3. 王岩,曹现刚,张旭辉,樊红卫,段雍,霍小泉. 基于知识图谱的采煤机智能维护知识库构建. 工矿自动化. 2021(07): 29-36 . 本站查看
4. 张继旺,丁克勤,王洪柱. 基于VMD-CNN的滚动轴承早期微弱故障智能诊断方法. 组合机床与自动化加工技术. 2020(11): 15-19 . 百度学术
5. 樊红卫,张旭辉,曹现刚,万翔,杨一晴. 智慧矿山背景下我国煤矿机械故障诊断研究现状与展望. 振动与冲击. 2020(24): 194-204 . 百度学术
6. 张雷,赵彤,李先圣,刘晓文. 井下人员违规进入无源监测方法. 工矿自动化. 2018(10): 29-33 . 本站查看
其他类型引用(9)
计量
- 文章访问数: 70
- HTML全文浏览量: 9
- PDF下载量: 11
- 被引次数: 15