煤矿井下雾尘图像清晰化算法

吴开兴, 张琳, 李丽宏

吴开兴,张琳,李丽宏.煤矿井下雾尘图像清晰化算法[J].工矿自动化,2018,44(3):70-75.. DOI: 10.13272/j.issn.1671-251x.2017100078
引用本文: 吴开兴,张琳,李丽宏.煤矿井下雾尘图像清晰化算法[J].工矿自动化,2018,44(3):70-75.. DOI: 10.13272/j.issn.1671-251x.2017100078
WU Kaixing, ZHANG Lin, LI Lihong. Sharpening algorithm for underground images with fog and dust[J]. Journal of Mine Automation, 2018, 44(3): 70-75. DOI: 10.13272/j.issn.1671-251x.2017100078
Citation: WU Kaixing, ZHANG Lin, LI Lihong. Sharpening algorithm for underground images with fog and dust[J]. Journal of Mine Automation, 2018, 44(3): 70-75. DOI: 10.13272/j.issn.1671-251x.2017100078

煤矿井下雾尘图像清晰化算法

基金项目: 

河北省教育厅项目(ZD2014081)

河北省自然科学基金资助项目(F2015402150)

详细信息
  • 中图分类号: TD67

Sharpening algorithm for underground images with fog and dust

  • 摘要: 针对由于煤矿井下环境存在大量煤尘、水雾,监控图像出现模糊、退化现象的问题,提出一种基于暗原色原理和主成分分析的煤矿井下雾尘图像清晰化算法。该算法基于大气散射模型,根据暗原色原理计算透射率;用主成分分析法得出能够充分反映雾尘图像信息的亮度、饱和度及对比度,通过对这些指标进行加权处理来计算大气光值,实现了对煤矿井下雾尘图像的清晰化处理。仿真结果表明,该算法可较大程度地还原图像细节,并保持图像的真实性和结构完整性,实时性较好。
    Abstract: In view of fuzzy and degenerated images in coal mine environment due to presence of large amounts of coal dust and water mist, a sharpening algorithm based on dark primary principle and principal component analysis was proposed. Based on atmospheric scattering model, transmittance is calculated according to the dark primary principle. The principal component analysis is used to obtain brightness, saturation and contrast, which can fully reflect fog image information. Atmospheric light value is calculated by weighting these indexes, so as to realize sharpening process of underground images with fog and dust in underground coal mine. The simulation results show that the proposed algorithm can restrain image detail to a great extent, maintain authenticity and structural integrity of the image, and have good real-time performance.
  • 期刊类型引用(6)

    1. 张旭辉,解彦彬,杨文娟,张超,万继成,董征,王彦群,蒋杰,李龙. 煤矿井下采掘工作场景非均质图像去雾与增强技术. 煤田地质与勘探. 2025(01): 245-256 . 百度学术
    2. 张立亚. 基于生成对抗网络的带式输送机异物检测方法. 工矿自动化. 2023(11): 53-59 . 本站查看
    3. 郝博南. 基于去尘估计和多重曝光融合的煤矿井下图像增强方法. 工矿自动化. 2023(11): 100-106 . 本站查看
    4. 樊占文,刘波. 基于改进的Retinex低照度图像自适应增强技术研究. 工矿自动化. 2021(S1): 126-130 . 本站查看
    5. 荣耀,安晓宇. 智能化开采中视频信息的应用现状及展望. 煤炭科学技术. 2021(S1): 119-123 . 百度学术
    6. 邵明省. 基于划区域暗通道算法的农田图像去雾研究. 江苏农业科学. 2021(20): 201-204 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  64
  • HTML全文浏览量:  9
  • PDF下载量:  15
  • 被引次数: 7
出版历程
  • 刊出日期:  2018-03-09

目录

    /

    返回文章
    返回