基于蚁群算法的井下救援路径优化方法

龚星宇1, 常心坦2, 贾澎涛1, 罗碧波

龚星宇,常心坦,贾澎涛,等.基于蚁群算法的井下救援路径优化方法[J].工矿自动化,2018,44(3):76-81.. DOI: 10.13272/j.issn.1671-251x.2017030023
引用本文: 龚星宇,常心坦,贾澎涛,等.基于蚁群算法的井下救援路径优化方法[J].工矿自动化,2018,44(3):76-81.. DOI: 10.13272/j.issn.1671-251x.2017030023
GONG Xingyu, CHANG Xintan, JIA Pengtao, LUO Bibo. Optimization method for mine rescue path based on ant colony algorithm[J]. Journal of Mine Automation, 2018, 44(3): 76-81. DOI: 10.13272/j.issn.1671-251x.2017030023
Citation: GONG Xingyu, CHANG Xintan, JIA Pengtao, LUO Bibo. Optimization method for mine rescue path based on ant colony algorithm[J]. Journal of Mine Automation, 2018, 44(3): 76-81. DOI: 10.13272/j.issn.1671-251x.2017030023

基于蚁群算法的井下救援路径优化方法

基金项目: 

西安市科技计划项目(2017079CG/RC042(XAKD001))

西安科技大学培育基金项目(201746)

详细信息
  • 中图分类号: TD77

Optimization method for mine rescue path based on ant colony algorithm

  • 摘要: 针对火灾背景下煤矿应急救援路径的优化问题,提出了一种基于蚁群算法的井下救援路径优化方法;建立了井下救援路径选择影响因素的层次结构模型,各影响因素按重要程度由高到低排列为CO浓度、瓦斯浓度、风量风速、巷道行走难度和人员综合素质;利用各影响因素的量化值更新蚁群算法信息素,寻找并保存最优路径。仿真结果表明,采用基于蚁群算法的井下救援路径优化方法能够选出最优路径,同时最优解具有较好的收敛性。
    Abstract: In view of optimization problem of emergency rescue path in underground fire condition, an optimization method for mine rescue path based on ant colony algorithm was proposed. Hierarchical structure model of influencing factors on mine rescue path selection was established, and according to degree of importance, the influencing factors were listed as follows: CO concentration, gas concentration, wind speed, roadway difficulty and personnel quality. The quantification of each factor is used to update pheromone of the ant colony algorithm to find and save the optimal path. The simulation results show that the optimal path can be selected by using the rescue path optimization method based on the ant colony algorithm, and the optimal solution has good convergence.
  • 期刊类型引用(8)

    1. 于丹,颜伟. 煤矿井下避灾路径规划研究综述. 中国煤炭. 2022(02): 40-47 . 百度学术
    2. 马小陆,梅宏. 基于改进势场蚁群算法的移动机器人全局路径规划. 机械工程学报. 2021(01): 19-27 . 百度学术
    3. 杨华玲. 基于混合算法的多停靠点物流路径规划仿真. 计算机仿真. 2021(04): 119-123 . 百度学术
    4. 郭长恒,邢玉忠. 灾后巷道堆积体力学特征分析. 煤矿安全. 2020(05): 225-230 . 百度学术
    5. 郝天轩,赵立桢. 跨平台矿井应急救援路径寻优方案研究. 工矿自动化. 2020(05): 108-112 . 本站查看
    6. 胡人元. 深井被困事故井下救援处置程序体系构建. 武警学院学报. 2020(02): 35-38 . 百度学术
    7. 侯远韶. 基于改进蚁群算法在机器人路径优化中的应用. 安阳工学院学报. 2020(06): 39-42 . 百度学术
    8. 孙瑞,张文胜. 基于改进蚁群算法的移动机器人平滑路径规划. 图学学报. 2019(02): 344-350 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  125
  • HTML全文浏览量:  14
  • PDF下载量:  12
  • 被引次数: 13
出版历程
  • 刊出日期:  2018-03-09

目录

    /

    返回文章
    返回