基于WiFi信号二次扩频的矿井TOA测距方法

孙继平, 蒋恩松

孙继平,蒋恩松.基于WiFi信号二次扩频的矿井TOA测距方法[J].工矿自动化,2017,43(10):53-58.. DOI: 10.13272/j.issn.1671-251x.2017.10.011
引用本文: 孙继平,蒋恩松.基于WiFi信号二次扩频的矿井TOA测距方法[J].工矿自动化,2017,43(10):53-58.. DOI: 10.13272/j.issn.1671-251x.2017.10.011
SUN Jiping, JIANG Ensong. Mine TOA ranging method based on re-spread spectrum to WiFi signal[J]. Journal of Mine Automation, 2017, 43(10): 53-58. DOI: 10.13272/j.issn.1671-251x.2017.10.011
Citation: SUN Jiping, JIANG Ensong. Mine TOA ranging method based on re-spread spectrum to WiFi signal[J]. Journal of Mine Automation, 2017, 43(10): 53-58. DOI: 10.13272/j.issn.1671-251x.2017.10.011

基于WiFi信号二次扩频的矿井TOA测距方法

基金项目: 

国家重点研发计划重点专项资助项目(2016YFC0801800)

国家自然科学基金资助项目(51674269)

详细信息
  • 中图分类号: TD655

Mine TOA ranging method based on re-spread spectrum to WiFi signal

  • 摘要: 针对TOA方法对时间测量精度要求高,但现有矿井WiFi通信系统通信过程中时间测量分辨率低的问题,提出了一种对WiFi信号进行二次扩频以获得高时间分辨率的TOA测距方法。在WiFi移动站上集成多载波扩频调制部件,用以对测距的WiFi信号进行二次扩频;在WiFi基站集成多载波扩频解调部件,并利用FPGA设计的高速数字匹配滤波器扩频码捕获算法,在亚码片级上对WiFi移动站发出的测距信号进行捕获,进而得到高分辨率的信号传播时延。试验结果表明,该方法测距误差均值为1.92 m,能够为WiFi通信系统进行TOA定位提供可靠的测距值。
    Abstract: TOA ranging method requests high precision time measurement while existing mine WiFi systems can not provide high temporal resolution timer. In order to resolve the above technical problems, a TOA ranging method using re-spread spectrum technology to WiFi signal to obtain high resolution was proposed. Multi-carrier spread spectrum modulator is integrated into WiFi mobile station which is used to spread spectrum for ranging WiFi signal. Correspondingly, multi-carrier spread spectrum demodulator is integrated into WiFi base station, and a spread spectrum code capture algorithm with high speed digital matched filter designed by FPGA is used to capture ranging signal sent by the WiFi mobile station in sub-chip level, thus, the signal propagation delay time with high resolution is obtained. The test results show that the proposed method can provide reliable ranging data with mean-error of 1.92 m for TOA positioning of WiFi communication system.
  • 期刊类型引用(8)

    1. 秦宇龙,程继明,任一个,王晓晴,赵青,安翠娟. 基于改进YOLOv5的带式输送机大块煤检测. 工矿自动化. 2024(02): 57-62+71 . 本站查看
    2. 张克亮. 基于MT-CNN的矿井带式输送机输煤量检测技术. 中国矿业. 2024(06): 137-142 . 百度学术
    3. 王伟,李擎,张德政,栗辉,王昊. 基于深度学习的矿石图像处理研究综述. 工程科学学报. 2023(04): 621-631 . 百度学术
    4. 朱延涛. 基于视频比对算法的溜槽堵塞检测方案研究及应用. 煤炭加工与综合利用. 2023(02): 29-31 . 百度学术
    5. 王渊,郭卫,张传伟,贺海涛,赵栓峰,路正雄. 融合注意力机制和先验知识的刮板输送机异常煤块检测. 西安科技大学学报. 2023(01): 192-200 . 百度学术
    6. 高凯,董立红,邓凡. 基于递归门控卷积和上下文注意力的煤块检测算法. 矿业研究与开发. 2023(06): 183-190 . 百度学术
    7. 张旭辉,闫建星,张超,万继成,王利欣,胡成军,王力,王东. 基于改进YOLOv5s+DeepSORT的煤块行为异常识别. 工矿自动化. 2022(06): 77-86+117 . 本站查看
    8. 王昱栋,代伟,马小平. 基于机器视觉的锚杆异常快速检测方法. 工矿自动化. 2021(04): 13-18 . 本站查看

    其他类型引用(2)

计量
  • 文章访问数:  62
  • HTML全文浏览量:  17
  • PDF下载量:  12
  • 被引次数: 10
出版历程
  • 刊出日期:  2017-10-09

目录

    /

    返回文章
    返回