Application of improved FastICA algorithm in compound fault diagnosis of vibrating scree
-
摘要: 针对常见故障特征提取方法不能完全、有效地提取复合故障特征的问题,提出了一种改进快速独立分量分析(FastICA)算法。该算法自适应选择不同的非线性函数进行渐进性分析,提取的数据特征较FastICA算法更准确。将改进FastICA算法应用于振动筛复合故障诊断中,仿真和实测结果表明,该算法可有效提取不同的故障特征,具有较高的分离精度。Abstract: In view of problem that common fault characteristic extraction methods could not extract compound fault characteristic completely and effectively, an improved fast independent component analysis(FastICA) algorithm was proposed. The improved FastICA algorithm adaptively selects different nonlinear function to take progressive analysis, so data characteristic extracted by the improved FastICA algorithm is more accurate than that extracted by FastICA algorithm. The improved FastICA algorithm was applied to compound fault diagnosis of vibrating screen. The simulation and actual test results show that the improved FastICA algorithm can extract different fault characteristics effectively with higher separation accuracy.
-
-
期刊类型引用(4)
1. 柴进,张海斌,高平小,王湛,乔宏. 基于特征融合的选煤厂振动筛故障诊断方法. 煤炭工程. 2023(06): 158-163 . 百度学术
2. 吴景红. 煤矿机械故障诊断研究现状及发展趋势. 煤炭工程. 2023(06): 187-192 . 百度学术
3. 李源彬,李凌,穆炯. 基于图像特征的黄瓜叶片叶绿素含量分布测试方法. 山东农业大学学报(自然科学版). 2020(06): 1004-1009 . 百度学术
4. 赵知劲,黄艳波,强芳芳. 基于有理多项式非线性函数的FastICA算法. 杭州电子科技大学学报(自然科学版). 2018(01): 1-6 . 百度学术
其他类型引用(7)
计量
- 文章访问数: 52
- HTML全文浏览量: 10
- PDF下载量: 8
- 被引次数: 11