煤炭勘探及救援机器人最优路径规划研究

李晓静, 余东满

李晓静,余东满.煤炭勘探及救援机器人最优路径规划研究[J].工矿自动化,2017,43(3):24-29.. DOI: 10.13272/j.issn.1671-251x.2017.03.006
引用本文: 李晓静,余东满.煤炭勘探及救援机器人最优路径规划研究[J].工矿自动化,2017,43(3):24-29.. DOI: 10.13272/j.issn.1671-251x.2017.03.006
LI Xiaojing, YU Dongman. Research on the optimal path planning of coal exploration and rescue robot[J]. Journal of Mine Automation, 2017, 43(3): 24-29. DOI: 10.13272/j.issn.1671-251x.2017.03.006
Citation: LI Xiaojing, YU Dongman. Research on the optimal path planning of coal exploration and rescue robot[J]. Journal of Mine Automation, 2017, 43(3): 24-29. DOI: 10.13272/j.issn.1671-251x.2017.03.006

煤炭勘探及救援机器人最优路径规划研究

基金项目: 

河南省青年骨干教师资助计划项目(2012GGJS-248)

详细信息
  • 中图分类号: TD67

Research on the optimal path planning of coal exploration and rescue robot

  • 摘要: 为了解决三维环境中的煤炭勘探及救援机器人路径规划问题,提出了一种基于改进蚁群算法的煤炭勘探及救援机器人最优路径规划方法。利用栅格法创建了三维空间环境模型,建立了煤炭勘探及救援机器人的路径规划目标函数;通过引入新的启发函数因子、节点随机选择机制、局部更新和全局更新相结合的策略分别对算法的节点转移概率设计、节点选择策略和信息素更新策略进行了优化改进。Matlab仿真结果表明,在三维空间环境模型中,传统蚁群算法和改进蚁群算法均能为煤炭勘探及救援机器人搜索出一条最优路径;在不同任务要求下,改进蚁群算法能有效缩短搜索路径长度和降低路径搜索时间,且具有较强的决策能力和较好的收敛性能。
    Abstract: In order to solve path planning problem of coal exploration and rescue robots in three-dimentional environment, an optimal path planning method for coal exploration and rescue robot based on improved ant colony algorithm was proposed. Three-dimensional space environment model is established by using grid method, and path planning objective function of coal exploration and rescue robot is established. Node transition probability design, node selection strategy and pheromone update strategy are optimized and improved by introducing new heuristic function factor, random selection mechanism of node and combining strategy of local updating and global updating. Matlab simulation results show that both the traditional ant colony algorithm and the improved ant colony algorithm can find an optimal path for the coal exploration and rescue robot in the three-dimensional environment model. Under different task requirements, the improved ant colony algorithm can effectively shorten the length of search path and reduce time of path search, and has strong decision-making ability and good convergence performance.
  • 期刊类型引用(8)

    1. 鞠慕涵,刘万科,胡捷,谷宇鹏. 改进D~*算法的未知场景机器人运动规划. 导航定位学报. 2024(03): 145-153 . 百度学术
    2. 陈思成,纪玉杰,路达. 采样机器人路径规划研究. 内燃机与配件. 2022(22): 96-98 . 百度学术
    3. 郝天轩,赵立桢. 跨平台矿井应急救援路径寻优方案研究. 工矿自动化. 2020(05): 108-112 . 本站查看
    4. 熊雄. 多出口建筑疏散最优路径分层搜索算法仿真. 计算机仿真. 2020(08): 419-423 . 百度学术
    5. 王飞,江明. 基于一种改进的蚁群算法的移动机器人三维路径规划研究. 安徽工程大学学报. 2019(03): 43-48 . 百度学术
    6. 张苏英,赵国花,郭宝樑,于佳兴,刘慧贤. 基于改进的蚁群算法的移动机器人路径规划. 河北工业科技. 2019(06): 390-395 . 百度学术
    7. 沈显庆,孙启智. BSO算法在移动机器人三维路径规划中的应用. 黑龙江科技大学学报. 2019(06): 747-751 . 百度学术
    8. 龚星宇,常心坦,贾澎涛,罗碧波. 基于蚁群算法的井下救援路径优化方法. 工矿自动化. 2018(03): 76-81 . 本站查看

    其他类型引用(6)

计量
  • 文章访问数:  71
  • HTML全文浏览量:  15
  • PDF下载量:  19
  • 被引次数: 14
出版历程
  • 刊出日期:  2017-03-09

目录

    /

    返回文章
    返回