采煤工作面CH4大样本数据感知关键技术及监测模式研究

贺耀宜, 代左朋, 杨耀, 屈世甲, 张清, 孙旭峰, 张涛

贺耀宜,代左朋,杨耀,等. 采煤工作面CH4大样本数据感知关键技术及监测模式研究[J]. 工矿自动化,2024,50(11):17-25, 91. DOI: 10.13272/j.issn.1671-251x.18218
引用本文: 贺耀宜,代左朋,杨耀,等. 采煤工作面CH4大样本数据感知关键技术及监测模式研究[J]. 工矿自动化,2024,50(11):17-25, 91. DOI: 10.13272/j.issn.1671-251x.18218
HE Yaoyi, DAI Zuopeng, YANG Yao, et al. Key technologies and monitoring model for large-scale data perception of CH4 in coal mining faces[J]. Journal of Mine Automation,2024,50(11):17-25, 91. DOI: 10.13272/j.issn.1671-251x.18218
Citation: HE Yaoyi, DAI Zuopeng, YANG Yao, et al. Key technologies and monitoring model for large-scale data perception of CH4 in coal mining faces[J]. Journal of Mine Automation,2024,50(11):17-25, 91. DOI: 10.13272/j.issn.1671-251x.18218

采煤工作面CH4大样本数据感知关键技术及监测模式研究

基金项目: 江苏省成果转化项目(BA2022040);中国煤炭科工集团有限公司科技创新创业资金专项项目−国际科技合作项目(2021-2-GH003);天地科技股份有限公司科技创新创业资金专项项目(2019-TD-ZD007);天地(常州)自动化股份有限公司基金项目(2024TY2002,2024TY2005)。
详细信息
    作者简介:

    贺耀宜(1974—),男,陕西蓝田人,研究员,硕士,主要从事煤矿监测监控与信息化、物联网应用研究工作,E-mail:hyy@cari.com.cn

  • 中图分类号: TD712

Key technologies and monitoring model for large-scale data perception of CH4 in coal mining faces

  • 摘要:

    全面感知和实时互联是智能化煤矿最基本的功能要素。现阶段采煤工作面整体环境感知能力不足,感知设备设置监测点数量有限,末端无线网络不够健全,缺乏高精度位置服务,导致矿井与采煤工作面全面感知所需数据样本量偏少,信息透明度不够,隐患识别和安全预警准确性偏低。针对该问题,以采煤工作面为应用场景,以CH4为监测对象,研究煤矿工作环境参数大样本数据感知关键技术及监测模式。通过研究无线低功耗CH4传感与自标校技术,实现在采煤工作面布置大量CH4传感器进行全面感知,解决长时间免标校维护的技术难题;通过研究传感设备对象编码与定位技术,解决大量传感设备的身份和位置识别难题;通过研究适用于矿井线性空间的高速无线数据传输技术,以及无线骨干网链路节点的路由自发现、网络故障自主发现、故障节点及时隔离和自恢复技术,解决采煤工作面布设大量CH4传感器及工作面移动带来的数据实时传输与维护问题;通过研究基于边缘计算的大样本数据连续监测模式,针对采集的大量CH4传感数据,利用空间数字云图技术,实现整个采煤工作面CH4面域连续监测和全面感知及作业现场数据分级处理。采煤工作面CH4大样本数据感知关键技术及监测模式为其他矿井环境参数的全面感知研究提供了基础技术积累。

    Abstract:

    Comprehensive perception and real-time connectivity are fundamental functional elements of intelligent coal mines. Currently, coal mining faces suffer from insufficient overall environmental perception capabilities. Limitations include the small number of monitoring points for perception devices, inadequate terminal wireless network coverage, and a lack of high-precision positioning services. These shortcomings result in inadequate data sample sizes required for comprehensive perception of mines and coal mining faces, low information transparency, and reduced accuracy in hazard identification and safety warnings. To address these issues, this study investigated coal mining faces as the application scenario and CH4 as the monitoring target, exploring key technologies and monitoring models for large-scale data perception of coal mine environmental parameters. By investigating low-power wireless CH4 sensing and self-calibration technologies, the study enabled the deployment of numerous CH4 sensors in coal mining faces for comprehensive perception, resolving technical challenges associated with calibration-free maintenance. The study also addressed the difficulties of identifying the identities and locations of numerous sensors by developing device encoding and positioning technologies for sensing devices. Additionally, the study proposed high-speed wireless data transmission technologies suitable for the linear space of mines, along with autonomous routing discovery, network fault detection, timely isolation of fault nodes, and self-recovery for wireless backbone link nodes. These advancements solved the real-time data transmission and maintenance challenges arising from the deployment of large numbers of CH4 sensors and the mobility of coal mining faces. Furthermore, a continuous monitoring model for large-scale data based on edge computing was developed. This model processed the collected CH4 sensor data using spatial digital cloud mapping technology to achieve continuous monitoring and comprehensive perception of CH4 across the entire coal mining face, as well as hierarchical data processing at operational sites. The key technologies and monitoring model for large-scale data perception of CH4 in coal mining faces accumulate foundational technical knowledge for comprehensive perception studies of other mine environmental parameters.

  • 图  1   工作面CH4大样本数据分级处理模式

    Figure  1.   Large sample data graded processing mode for CH4 in working face

    图  2   MEMS微型加热板芯片结构

    Figure  2.   Structure of micro-electro-mechanical system (MEMS) micro heating plate chip

    图  3   MEMS CH4传感模组的微处理器控制逻辑

    Figure  3.   Logical control of micro controller in MEMS CH4 sensor

    图  4   MEMS CH4传感模组低功耗休眠策略

    Figure  4.   Sleep schedule for low-power consumption of MEMS CH4 sensor

    图  5   MEMS CH4传感模组未补偿数据与拟合/预测值对比

    Figure  5.   Comparison between MEMS CH4 sensor data without compensation and the fitted value or the predicted value

    图  6   MEMS CH4传感设备自标校方式

    Figure  6.   Self calibration mode of MEMS CH4 sensor

    图  7   煤矿传感设备(智能设备)对象编码分层结构

    Figure  7.   Object encoding layered structure of mine sensor (intelligent equipment)

    图  8   无线自组网络拓扑结构

    Figure  8.   Topology structure of wireless ad-hoc network

    图  9   骨干节点组成与通信方式

    Figure  9.   Component of backbone nodes and their communication mode

    图  10   采煤工作面CH4大样本数据连续监测技术路线

    Figure  10.   Technique route of large sample data monitoring for CH4 in working face

    图  11   无线低功耗MEMS CH4传感器布置方案

    Figure  11.   Layout scheme of wireless MEMS CH4 sensors with low power consumption

    图  12   基于模拟巷道的工作面CH4空间数字云图

    Figure  12.   Spatial CH4 data cloud map in working face based on simulated roadway

    图  13   MEMS CH4传感器数据变化

    Figure  13.   Change of MEMS CH4 sensor data

  • [1] 王国法,杜毅博,庞义辉. 6S智能化煤矿的技术特征和要求[J]. 智能矿山,2022,3(1):2-13.

    WANG Guofa,DU Yibo,PANG Yihui. Technique characteristics and requirements 6S intelligent coal mine[J]. Journal of Smart Mine,2022,3(1):2-13.

    [2] 毛明仓,张孝斌,张玉良. 基于透明地质大数据智能精准开采技术研究[J]. 煤炭科学技术,2021,49(1):286-293.

    MAO Mingcang,ZHANG Xiaobin,ZHANG Yuliang. Research on intelligent and precision mining technology based on transparent geological big data[J]. Coal Science and Technology,2021,49(1):286-293.

    [3] 郭昌放. 基于多源数据协同和智能算法的煤矿工作面透明化系统研究[D]. 徐州:中国矿业大学,2020.

    GUO Changfang. Research on transparency system of working face based on multi-source data collaboration and intelligent algorithms[D]. Xuzhou:China University of Mining and Technology,2020.

    [4] 程建远,朱梦博,王云宏,等. 煤炭智能精准开采工作面地质模型梯级构建及其关键技术[J]. 煤炭学报,2019,44(8):2285-2295.

    CHENG Jianyuan,ZHU Mengbo,WANG Yunhong,et al. Cascade construction of geological model of longwall panel for intelligent precision coal mining and its key technology[J]. Journal of China Coal Society,2019,44(8):2285-2295.

    [5] 樊子恒. 融合透明地质与灾害预警的煤矿综合管控平台研究[J]. 矿业安全与环保,2024,51(4):168-174,180.

    FAN Ziheng. Research on coal mine comprehensive control platform based on transparent geology and disaster early warning[J]. Mining Safety & Environmental Protection,2024,51(4):168-174,180.

    [6] 代伟,赵杰,杨春雨,等. 基于双目视觉深度感知的带式输送机煤量检测方法[J]. 煤炭学报,2017,42(增刊2):547-555.

    DAI Wei,ZHAO Jie,YANG Chunyu,et al. Detection method of coal quantity in belt conveyor based on binocular vision depth perception[J]. Journal of China Coal Society,2017,42(S2):547-555.

    [7] 陶显,侯伟,徐德. 基于深度学习的表面缺陷检测方法综述[J]. 自动化学报,2021,47(5):1017-1034.

    TAO Xian,HOU Wei,XU De. A survey of surface defect detection methods based on deep learning[J]. Acta Automatica Sinica,2021,47(5):1017-1034.

    [8] 王渊,郭卫,张传伟,等. 融合注意力机制和先验知识的刮板输送机异常煤块检测[J]. 西安科技大学学报,2023,43(1):192-200.

    WANG Yuan,GUO Wei,ZHANG Chuanwei,et al. Detection of abnormal coal block in scraper conveyor integrating attention mechanism and prior knowledge[J]. Journal of Xi'an University of Science and Technology,2023,43(1):192-200.

    [9] 王海波,赵立厂. 矿山物联网的泛在特征分析与泛在能力建设[J]. 煤炭科学技术,2020,48(7):127-133.

    WANG Haibo,ZHAO Lichang. Ubiquitous feature analysis and ubiquitous capacity construction of mine Internet of things[J]. Coal Science and Technology,2020,48(7):127-133.

    [10] 袁亮,俞啸,丁恩杰,等. 矿山物联网人−机−环状态感知关键技术研究[J]. 通信学报,2020,41(2):1-12. DOI: 10.11959/j.issn.1000-436x.2020036

    YUAN Liang,YU Xiao,DING Enjie. Research on key technologies of human-machine-environment states perception in mine Internet of things[J]. Journal on Communications,2020,41(2):1-12. DOI: 10.11959/j.issn.1000-436x.2020036

    [11] 贺耀宜,刘丽静,赵立厂,等. 基于工业物联网的智能矿山基础信息采集关键技术与平台[J]. 工矿自动化,2021,47(6):17-24.

    HE Yaoyi,LIU Lijing,ZHAO Lichang,et al. Key technology and platform of intelligent mine basic information acquisition based on industrial Internet of things[J]. Industry and Mine Automation,2021,47(6):17-24.

    [12] 屈世甲,武福生. 基于边缘计算的采煤工作面甲烷监测模式研究[J]. 煤炭科学技术,2020,48(12):161-167.

    QU Shijia,WU Fusheng. Research on methane monitoring mode of coal mining face based on edge computing[J]. Coal Science and Technology,2020,48(12):161-167.

    [13] 王海波. 低功耗甲烷传感器研究进展[J]. 工矿自动化,2021,47(5):16-23.

    WANG Haibo. Research progress of low-power methane sensor[J]. Industry and Mine Automation,2021,47(5):16-23.

    [14] 王璐. 煤矿安全监控系统中无线激光甲烷传感器的研究与设计[J]. 煤炭技术,2019,38(8):154-158.

    WANG Lu. Research and design of wireless laser methane sensor in coal mine safety monitoring system[J]. Coal Technology,2019,38(8):154-158.

    [15] 国家矿山安全监察局. 智能化矿山数据融合共享规范[EB/OL]. (2023-07-04) [2024-06-18]. https://www.chinamine-safety.gov.cn/xw/zt/2018zt/mkjqryfyy/gzdt_01/202307/t20230704_455286.shtml.

    National Mine Safety Administration. Intelligent mine data fusion and sharing standard[EB/OL]. (2023-07-04) [2024-06-18]. https://www.chinamine-safety.gov.cn/xw/zt/2018zt/mkjqryfyy/gzdt_01/202307/t20230704_455286.shtml.

    [16] 余海林,莫莉,赵悦,等. 基于ZigBee无线传感器的井下甲烷浓度监测系统[J]. 成都大学学报(自然科学版),2022,41(2):146-150,163.

    YU Hailin,MO Li,ZHAO Yue,et al. Underground methane concentration monitoring system based on ZigBee wireless sensor[J]. Journal of Chengdu University(Natural Science Edition),2022,41(2):146-150,163.

    [17] 吴士涛,汤建泉,杨婕. 基于WaveMesh网络与STM32的煤矿顶板离层监测系统设计[J]. 煤矿安全,2022,53(1):139-144.

    WU Shitao,TANG Jianquan,YANG Jie. Design of monitoring system for coal mine roof separation based on WaveMesh network and STM32[J]. Safety in Coal Mines,2022,53(1):139-144.

    [18] 卓敏敏,赵立厂,李继云. 低功耗蓝牙模块能耗特征分析[J]. 工矿自动化,2019,45(10):91-94,98.

    ZHUO Minmin,ZHAO Lichang,LI Jiyun. Analysis of energy consumption characteristics of bluetooth low energy module[J]. Industry and Mine Automation,2019,45(10):91-94,98.

    [19] 张铮,曹守启,朱建平,等. 面向实时监测的无线传感网低功耗通信策略[J]. 仪器仪表学报,2019,40(2):257-264.

    ZHANG Zheng,CAO Shouqi,ZHU Jianping,et al. Low power communication scheme in wireless sensor network for real-time monitoring[J]. Chinese Journal of Scientific Instrument,2019,40(2):257-264.

    [20] 李时杰. 远距离低功耗无线传感网络终端节点的设计与实现[D]. 合肥:合肥工业大学,2018.

    LI Shijie. Design and implementation of long-distance and low-power wireless sensor network terminal node[D]. Hefei:Hefei University of Technology,2018.

    [21] 滕文想,何继鹏,刘鹏宇. 窄长空间无线传感器网络节点部署策略研究[J]. 煤炭工程,2023,55(7):151-157.

    TENG Wenxiang,HE Jipeng,LIU Pengyu. Deployment strategy of wireless sensor network nodes in narrow and long space[J]. Coal Engineering,2023,55(7):151-157.

  • 期刊类型引用(7)

    1. 魏宗新,杨立民. 炼化用离心分离机的工程应用. 化工设计通讯. 2023(03): 75-78 . 百度学术
    2. 袁惠新,王伟鹏,付双成,戴如昊,周发戚. 卧式螺旋卸料沉降离心机螺旋空心轴内表面磨损的研究. 流体机械. 2023(12): 9-15 . 百度学术
    3. 刘丽艳,刘小康,樊东东,李昱奇,谭蔚,朱国瑞. 卧螺离心机进料分布器的流场模拟与结构优化. 天津大学学报(自然科学与工程技术版). 2021(01): 35-41 . 百度学术
    4. 谈志超,刘雪东,郭文元,张炜. 卧式螺旋离心机操作参数对粉煤气化灰水分离特性的影响. 机械设计与制造. 2021(04): 11-14 . 百度学术
    5. 付双成,张亚磊,姜毓圣,袁惠新. 卧螺离心机不同螺旋结构流场的数值模拟研究. 常州大学学报(自然科学版). 2020(01): 56-61 . 百度学术
    6. 陈美岭,许亚茹,许忠义,李振铭,刘振兴. 聚氯乙烯干燥系统离心机出现的问题及解决方案. 盐科学与化工. 2020(01): 52-54 . 百度学术
    7. 张建中,李峰,胡化增,张广浩,刘海洋. 矿用LW800卧螺离心机转鼓锥角结构优化. 流体机械. 2019(07): 11-14+38 . 百度学术

    其他类型引用(4)

图(13)
计量
  • 文章访问数:  288
  • HTML全文浏览量:  10
  • PDF下载量:  35
  • 被引次数: 11
出版历程
  • 收稿日期:  2024-10-21
  • 修回日期:  2024-11-14
  • 刊出日期:  2024-11-24

目录

    /

    返回文章
    返回