区域安全评估模型在煤矿安全管理中的应用研究

杨征, 杨小勇, 王宇, 龚韩君, 祝捷, 侯刚, 杨斐文, 方乾

杨征,杨小勇,王宇,等. 区域安全评估模型在煤矿安全管理中的应用研究[J]. 工矿自动化,2023,49(12):94-101, 129. DOI: 10.13272/j.issn.1671-251x.18174
引用本文: 杨征,杨小勇,王宇,等. 区域安全评估模型在煤矿安全管理中的应用研究[J]. 工矿自动化,2023,49(12):94-101, 129. DOI: 10.13272/j.issn.1671-251x.18174
YANG Zheng, YANG Xiaoyong, WANG Yu, et al. Research on the application of area safety assessment model in coal mine safety management[J]. Journal of Mine Automation,2023,49(12):94-101, 129. DOI: 10.13272/j.issn.1671-251x.18174
Citation: YANG Zheng, YANG Xiaoyong, WANG Yu, et al. Research on the application of area safety assessment model in coal mine safety management[J]. Journal of Mine Automation,2023,49(12):94-101, 129. DOI: 10.13272/j.issn.1671-251x.18174

区域安全评估模型在煤矿安全管理中的应用研究

基金项目: 国家重点研发计划项目(2022YFB4703603)。
详细信息
    作者简介:

    杨征(1984—),男,陕西神木人,工程师,现从事矿山压力与岩层控制方面的研究工作,E-mail:45553993@qq.com

    通讯作者:

    方乾(1994—),男, 湖北黄冈人,助理研究员,硕士,现从事大数据开发、机器学习等方面的研究工作,E-mail:fangqian@ccteg-bigdata.com

  • 中图分类号: TD67

Research on the application of area safety assessment model in coal mine safety management

  • 摘要:

    当前煤矿安全监测和管理系统的安全评价粒度基本都是矿井级或子系统级,无法针对矿井的不同区域进行精细化管理。针对该问题,基于矿井各区域作业场景特点,面向安全风险评价提出了一种统一的区域划分方法,将风险、隐患、灾害与区域工况、设备维护管理及人员定位等信息结合,对各安全系统数据进行统一区域划分和整理;从人、机、环、管4个维度对安全指标体系开展综合评价,通过主观赋权和客观赋权相结合的方法计算区域安全评估中的各指标权重,主观赋权通过层次分析法实现,客观赋权法采用熵权法实现;构建区域安全评估模型,对煤矿当前安全情况进行定量化评估和等级划分,采用归一化融合权重计算基础安全评分,并考虑高风险组合、历史趋势变化及区域间耦合影响对评分进行修正,得到矿井各级区域的综合安全评分。该模型已成功应用于陕西小保当矿业有限公司的智能化综合管控平台,为准确评估煤矿井下安全风险、提高煤矿安全管理水平提供了有效参考。

    Abstract:

    The safety evaluation granularity of the current coal mine safety monitoring and management system is basically at the mine level or subsystem level. It cannot be finely managed for different areas of the mine. In order to solve the above problem, a unified area division method is proposed for safety risk assessment based on the features of operational scenarios in various areas of the mine. This method combines information such as risks, hidden dangers, disasters with area operating conditions, equipment maintenance management, and personnel positioning to unify and organize data from various safety systems. A comprehensive assessment of the safety indicator system is conducted from four dimensions: human, machine, environment, and management. The weights of each indicator in the area safety assessment are calculated through a combination of subjective and objective weighting methods. The subjective weighting is achieved through the analytic hierarchy process, while the objective weighting method is achieved through the entropy weighting method. The method constructs an area safety assessment model, which quantitatively evaluates and classifies the current safety situation of coal mines. The method uses normalized fusion weights to calculate the basic safety score, and considers high-risk combinations, historical trend changes, and inter regional coupling effects to modify the score. The comprehensive safety scores of all levels of coal mine areas are obtained. This model has been successfully applied to the intelligent comprehensive control platform of Shaanxi Xiaobaodang Mining Co., Ltd.. It provides effective reference for accurately evaluating underground safety risks in coal mines and improving the level of coal mine safety management.

  • 图  1   区域安全的影响因素

    Figure  1.   Influencing factors of area safety

    图  2   小保当煤矿区域安全评估模型应用效果

    Figure  2.   Application effect of area safety assessment model in Xiaobaodang Coal Mine

    表  1   区域划分示例

    Table  1   An example of area division

    1级区域
    名称
    2级区域
    名称
    3级区域
    名称
    4级区域
    名称
    井下1号井掘进工作面1001掘进工作面
    综采工作面1002综采工作面
    1003综采工作面
    辅运巷1004辅运巷
    1005辅运巷
    井筒主斜井
    副斜井
    回风立井
    大巷主运大巷
    辅运大巷
    胶运大巷
    辅运斜巷
    回风大巷
    2号井掘进工作面1101掘进工作面
    综采工作面1002综采工作面
    1003综采工作面
    地面选煤厂原煤车间1201胶带
    煤仓块煤仓1号块煤仓
    下载: 导出CSV

    表  2   区域安全评分示例

    Table  2   An example of area safety score

    区域 分类 因素 $ \kappa $ $ \mu $ $ \omega $ 初始
    评分
    基础
    得分
    高风险
    组合修正
    趋势变化
    修正
    区域间
    耦合修正
    最终
    得分
    112204工作面 “三违” 0.12 0.09 0.17 83 14.3 0 1.4 0 15.7
    持证比例 0.06 0.08 0.07 88 6.3 0 0.6 0 6.9
    健康状况 0.06 0.06 0.06 85 4.9 0 0 0 4.9
    教育水平 0.03 0.03 0.01 82 1.0 0 0 0 1.0
    机械设备运行状态 0.04 0.06 0.04 89 3.4 0 0 0 3.4
    故障诊断结果 0.03 0.06 0.03 84 2.4 0 0 0 2.4
    维修记录 0.03 0.04 0.02 90 1.7 0 0 0 1.7
    0.06 0.06 0.06 86 4.9 0 0 0 4.9
    0.06 0.05 0.05 89 4.3 −1.7 0 0 2.6
    瓦斯 0.04 0.03 0.02 90 1.4 −0.6 0 0 0.9
    粉尘 0.05 0.05 0.04 84 3.3 0 −0.3 0 3.0
    0.05 0.04 0.03 90 2.9 1.0 −0.3 1.0 4.6
    地质状态 0.04 0.04 0.03 85 2.2 0 0 0 2.2
    安全管理制度与执行 0.10 0.08 0.13 86 11.0 0 0 0 11.0
    风险事件防治与处理指导 0.07 0.08 0.09 86 7.7 0 0 0 7.7
    是否结构合理、职责明确 0.06 0.07 0.07 87 5.8 0 0 0 5.8
    技术和安全培训 0.07 0.08 0.09 88 7.9 0 0 0 7.9
    应急预案 0.03 0.02 0.01 84 0.8 0 0 0 0.8
    汇总 1 1 1 86.1 −1.3 1.4 1.0 87.3
    下载: 导出CSV

    表  3   煤矿区域安全评价模拟计算结果

    Table  3   Simulation calculation results of coal mine area safety evaluation

    发生
    区域
    致因 区域安全评估模型模拟计算
    对应安全
    影响因素
    初始
    扣分
    权重 综合
    扣分
    预估安全
    得分(等级)
    转载
    运输巷
    1) 未确定临时支护有效 (人)“三违” −60 0.18 −29.1 56.9(危险)
    2) 未仔细观察顶板完好情况
    3) 进入严重失修区域冒险作业
    4) 矸石突然冒落 (环)地质状态 −30 0.04
    5) 安全生产主体责任落实不到位 (管)是否结构合理、职责明确 −60 0.08
    6) 现场监督检查不到位,造成严重后果
    7) 现场安全管理不到位,造成重大后果 (管)安全管理制度与执行 −60 0.13
    8) 职工安全教育培训不到位 (管)技术和安全培训 −50 0.09
    带式
    输送机
    石门
    1) 绞车司机违章操作,未按规定停车 (人)“三违” −40 0.18 −27.3 58.7(危险)
    2) 工作人员擅自违章进入运输支架路线
    3) 双速绞车钢丝绳钩头连接处突然断裂 (机)机械设备运行状态 −30 0.05
    4) 现场安全管理不到位 (管)安全管理制度与执行 −60 0.12
    5) 安全管理存在漏洞,存在严重安全隐患
    6) 安全隐患排查治理不到位,产生严重后果 (管)风险事件防治与处理指导 −60 0.10
    7) 安全教育培训不到位 (管)技术和安全培训 −60 0.09
    8) 机电技术管理培训不到位
    下载: 导出CSV
  • [1]

    YOU Mengjie,LI Shuang,LI Dingwei,et al. Applications of artificial intelligence for coal mine gas risk assessment[J]. Safety Science,2021,143. DOI: 10.1016/j.ssci.2021.105420.

    [2] 郭隆鑫,李希建,刘柱,等. 基于融合权集对云的煤矿安全评价及应用[J]. 中国安全生产科学技术,2021,17(2):65-70.

    GUO Longxin,LI Xijian,LIU Zhu,et al. Evaluation of coal mine safety based on fusion weight and set pair cloud and its application[J]. Journal of Safety Science and Technology,2021,17(2):65-70.

    [3] 马金山,赵志科,姬长生. 基于投影寻踪及灰靶决策的区域煤矿安全度分析[J]. 工业安全与环保,2014,40(8):25-27.

    MA Jinshan,ZHAO Zhike,JI Changsheng. Analysis of regional coal mines safety degree based on projection pursuit and grey target model[J]. Industrial Safety and Environmental Protection,2014,40(8):25-27.

    [4] 阳建新,李发菊,段伟强. 基于PCA−TOPSIS耦合模型的煤矿安全生产管理评价[J]. 中国矿业,2023,32(2):24-30.

    YANG Jianxin,LI Faju,DUAN Weiqiang. Evaluation of coal mine safety production management evaluation based on PCA-TOPSIS coupling model[J]. China Mining Magazine,2023,32(2):24-30.

    [5] 宿国瑞,贾宝山,王鹏,等. 基于多源异构数据的煤矿安全管理效果评估[J]. 中国安全科学学报,2021,31(6):64-69.

    SU Guorui,JIA Baoshan,WANG Peng,et al. Evaluation of coal mine safety management effect based on multi-source heterogeneous data[J]. China Safety Science Journal,2021,31(6):64-69.

    [6] 张晓霞. “煤科云”矿井智能一体化管控平台[J]. 智能矿山,2022,3(7):132-135.

    ZHANG Xiaoxia. The "Coal Science Cloud" intelligent integrated control platform for mines[J]. Journal of Intelligent Mine,2022,3(7):132-135.

    [7] 张晓霞,陈思宇,苏上海,等. 矿井智能一体化管控平台设计及应用[J]. 煤炭科学技术,2022,50(9):168-178.

    ZHANG Xiaoxia,CHEN Siyu,SU Shanghai,et al. Design and application of mine intelligent integrated management and control platform[J]. Coal Science and Technology,2022,50(9):168-178.

    [8] 王磊,苌延辉,苏上海,等. 煤科云智能一体化管控平台在天地王坡煤矿的设计与应用[J]. 智能矿山,2023,4(12):8-16.

    WANG Lei,CHANG Yanhui,SU Shanghai,et al. Design and application of MineCloud intelligent integrated management and control platform in Tiandi Wangpo Coal Mine[J]. Journal of Intelligent Mine,2023,4(12):8-16.

    [9] 胡群. 精细化管理在煤炭企业管理创新中的作用及应用策略[J]. 中国管理信息化,2023,26(2):147-149.

    HU Qun. The role and application strategies of refined management in innovative management of coal enterprises[J]. China Management Informationization,2023,26(2):147-149.

    [10] 屈世甲. 综采工作面区域网格化分区方法及其应用[J]. 工矿自动化,2018,44(9):94-97.

    QU Shijia. Grid partition method of fully-mechanized coal mining face area and its application[J]. Industry and Mine Automation,2018,44(9):94-97.

    [11] 王国法,任怀伟,赵国瑞,等. 智能化煤矿数据模型及复杂巨系统耦合技术体系[J]. 煤炭学报,2022,47(1):61-74.

    WANG Guofa,REN Huaiwei,ZHAO Guorui,et al. Digital model and giant system coupling technology system of smart coal mine[J]. Journal of China Coal Society,2022,47(1):61-74.

    [12] 荣雪,黄友锐,储怡然,等. 基于OPC UA的煤矿安全生产监控系统信息模型[J]. 工矿自动化,2022,48(3):112-117.

    RONG Xue,HUANG Yourui,CHU Yiran,et al. Information model of coal mine safety production monitoring system based on OPC UA[J]. Journal of Mine Automation,2022,48(3):112-117.

    [13] 洪伟斌,盛武. 基于DEMATEL−ISM−BN的煤矿透水事故影响因素分析[J]. 工矿自动化,2022,48(12):116-122.

    HONG Weibin,SHENG Wu. Analysis of influencing factors of coal mine water inrush accidents based on DEMATEL-ISM-BN[J]. Journal of Mine Automation,2022,48(12):116-122.

    [14] 王霖,方乾,张晓霞,等. 智能化煤矿数据仓库建模方法[J]. 工矿自动化,2022,48(4):5-13.

    WANG Lin,FANG Qian,ZHANG Xiaoxia,et al. Intelligent coal mine data warehouse modeling method[J]. Journal of Mine Automation,2022,48(4):5-13.

    [15] 徐全耀. 准东露天煤矿智能化建设探讨[J]. 工矿自动化,2022,48(增刊1):24-26,44.

    XU Quanyao. Probe on intelligent construction of Zhundong Open-pit Coal Mine[J]. Journal of Mine Automation,2022,48(S1):24-26,44.

    [16] 张兵. 煤矿智能化综合管控平台研究[J]. 工矿自动化,2022,48(增刊2):65-69.

    ZHANG Bing. Research on intelligent comprehensive management and control platform of coal mine[J]. Journal of Mine Automation,2022,48(S2):65-69.

    [17] 杨洋,张文博,左晨曦,等. 基于“人−机−环−管”理论的数字化煤矿安全管理研究演化分析[J]. 煤矿安全,2021,52(2):239-243,247.

    YANG Yang,ZHANG Wenbo,ZUO Chenxi,et al. Evolution analysis of digital mine safety management based on "man-machine-environment-management" theory[J]. Safety in Coal Mines,2021,52(2):239-243,247.

    [18] 国家安全生产监督管理总局. 煤矿安全规程[M]. 北京:煤炭工业出版社,2016.

    State Administration of Work Safety. Coal mine safety regulations[M]. Beijing:China Coal Industry Publishing House,2016.

    [19] 国家煤矿安全监察局. 国家煤矿安全监察局关于印发《煤矿安全生产标准化管理体系考核定级办法(试行)》和《煤矿安全生产标准化管理体系基本要求及评分方法(试行)》的通知[EB/OL]. (2020-05-11)[2023-09-18]. https://www.gov.cn/zhengce/zhengceku/2020-05/28/content_5515531.htm.

    State Administration of Coal Mine Safety. Notice of the State Administration of Coal Mine Safety on issuing the Measures for assessment and grading of coal mine safety production standardization management system (trial) and Basic requirements and scoring methods of coal mine safety production standardization management system (trial)[EB/OL]. (2020-05-11)[2023-09-18]. https://www.gov.cn/zhengce/zhengceku/2020-05/28/content_5515531.htm.

    [20] 方乾,张晓霞,王霖,等. 智能化煤矿大数据治理关键技术研究、实践与应用[J]. 工矿自动化,2023,49(5):37-45,73.

    FANG Qian,ZHANG Xiaoxia,WANG Lin,et al. Research,practice and application of key technologies of intelligent coal mine big data governance[J]. Journal of Mine Automation,2023,49(5):37-45,73.

    [21] 石高越. 区域煤矿安全态势分析及预警技术研究[D]. 青岛:山东科技大学,2019.

    SHI Gaoyue. Research on regional coal mine safety situation analysis and early warning technology[D]. Qingdao:Shandong University of Science and Technology,2019.

  • 期刊类型引用(8)

    1. 陆韦,徐胜玲,孟飞. 基于改进DES的高压电网用户信息安全传输方法. 自动化技术与应用. 2024(02): 112-115 . 百度学术
    2. 冯廷杰. 高速公路隧道内供配电设备运行状态监测. 设备管理与维修. 2023(14): 165-167 . 百度学术
    3. 屈世甲,武福生,贺耀宜. 煤矿安全监测监控体系中边缘计算模式研究. 煤炭科学技术. 2022(05): 247-252 . 百度学术
    4. 杜国强. 矿井机电设备的故障原因与维修对策. 内蒙古石油化工. 2022(10): 51-54+58 . 百度学术
    5. 屈世甲,吴雪菲. 基于物联终端的工作面甲烷数字场实现方法研究. 煤炭科学技术. 2021(12): 112-118 . 百度学术
    6. 张新. 矿井无线数据传输现状分析与系统设计. 化工矿物与加工. 2020(01): 32-35+40 . 百度学术
    7. 陈晓晶. LoRa组网技术在胶带运输监控系统中的应用研究. 工矿自动化. 2020(04): 91-97 . 本站查看
    8. 万雪芬,郑涛,崔剑,蒋学芹,Sardar Muhammad Sohail,杨义. 中小型规模智慧农业物联网终端节点设计. 农业工程学报. 2020(13): 306-314 . 百度学术

    其他类型引用(1)

图(2)  /  表(3)
计量
  • 文章访问数:  1056
  • HTML全文浏览量:  146
  • PDF下载量:  35
  • 被引次数: 9
出版历程
  • 收稿日期:  2023-11-02
  • 修回日期:  2023-12-19
  • 网络出版日期:  2024-01-02
  • 刊出日期:  2023-11-30

目录

    /

    返回文章
    返回