基于改进OpenPlanner算法的移动机器人局部路径规划

张志伟, 马小平, 白亚腾, 雷震亚, 李佳明

张志伟,马小平,白亚腾,等. 基于改进OpenPlanner算法的移动机器人局部路径规划[J]. 工矿自动化,2023,49(12):40-46. DOI: 10.13272/j.issn.1671-251x.18151
引用本文: 张志伟,马小平,白亚腾,等. 基于改进OpenPlanner算法的移动机器人局部路径规划[J]. 工矿自动化,2023,49(12):40-46. DOI: 10.13272/j.issn.1671-251x.18151
ZHANG Zhiwei, MA Xiaoping, BAI Yateng, et al. Local path planning for mobile robots based on improved OpenPlanner algorithm[J]. Journal of Mine Automation,2023,49(12):40-46. DOI: 10.13272/j.issn.1671-251x.18151
Citation: ZHANG Zhiwei, MA Xiaoping, BAI Yateng, et al. Local path planning for mobile robots based on improved OpenPlanner algorithm[J]. Journal of Mine Automation,2023,49(12):40-46. DOI: 10.13272/j.issn.1671-251x.18151

基于改进OpenPlanner算法的移动机器人局部路径规划

基金项目: 中央高校基本科研业务费专项资金资助项目(2020ZDPY0303);国家自然科学基金项目(61976218)。
详细信息
    作者简介:

    张志伟(1977—),男,山西朔州人,硕士研究生,主要研究方向为智能控制、无人驾驶,E-mail:13934995257@163.com

    通讯作者:

    雷震亚(2000—),男,湖北宜昌人,硕士研究生,主要研究方向为移动机器人路径规划,E-mail:04181254@cumt.edu.cn

  • 中图分类号: TD67

Local path planning for mobile robots based on improved OpenPlanner algorithm

  • 摘要:

    现有局部路径规划算法仅实现了移动机器人在场景内自由移动,但局部路径生成并未考虑场景内道路限制,对于一些规则化的结构道路并不适用。OpenPlanner算法很好地解决了该问题,但传统OpenPlanner算法规划的局部路径不满足移动机器人最大转向曲率约束而无法被移动机器人有效跟踪。针对上述问题,从状态采样和评价函数2个方面对传统OpenPlanner算法进行改进,并将改进OpenPlanner算法用于移动机器人局部路径规划。在状态采样阶段,通过设计双层局部路径簇来扩大最优局部路径解空间,其中首层局部路径簇入段纵向采样距离与行驶速度呈分段线性关系,次层局部路径簇入段纵向采样距离为首层局部路径簇的1.5倍;在路径筛选阶段,将路径曲率代价(由局部路径上各采样点曲率求和得到)引入评价函数,确保局部路径簇满足移动机器人的最大转向曲率约束,从而使局部路径被移动机器人所跟踪。实验结果表明:与传统OpenPlanner算法相比,改进OpenPlanner算法筛选的最优局部路径转向更加平缓,在无障碍物、有障碍物场景下平均曲率分别减小了31.3%,6.2%,且局部路径能够被移动机器人较好地跟踪。

    Abstract:

    The existing local path planning algorithms only achieve free movement of mobile robots in the scenario. But local path generation does not consider road constraints in the scenario, which is not applicable to some regularized structured roads. The OpenPlanner algorithm solves this problem well. But the local path planned by the traditional OpenPlanner algorithm does not meet the maximum turning curvature constraint of the mobile robot and cannot be effectively tracked by the mobile robot. In order to solve the above problem, the traditional OpenPlanner algorithm is improved from two aspects: state sampling and evaluation function. The improved OpenPlanner algorithm is applied to local path planning of mobile robots. In the state sampling stage, the optimal local path solution space is expanded by designing a double-layer local path cluster. The longitudinal sampling distance of the first layer local path cluster is linearly related to the driving speed in sections. The longitudinal sampling distance of the second layer local path cluster is 1.5 times that of the first layer local path cluster. In the path selection stage, the curvature cost of the path (obtained by summing the curvatures of each sampling point on the local path) is introduced into the evaluation function to ensure that the local path cluster satisfies the maximum turning curvature constraint of the mobile robot, thereby making the local path tracked by the mobile robot. The experimental results show that compared with the traditional OpenPlanner algorithm, the improved OpenPlanner algorithm filters the optimal local path with smoother turning. The average curvature is reduced by 31.3% and 6.2% in obstacle free and obstacle present scenarios, respectively. Moreover, the local path can be well tracked by mobile robots.

  • 图  1   局部路径簇分段结构

    Figure  1.   Sections of local path cluster

    图  2   沿参考线的状态采样过程

    Figure  2.   State sampling process along reference line

    图  3   参考线代价计算原理

    Figure  3.   Calculation principle of reference line cost

    图  4   过渡代价计算原理

    Figure  4.   Calculation principle of transition cost

    图  5   障碍物代价计算原理

    Figure  5.   Calculation principle of obstacle cost

    图  6   改进OpenPlanner算法局部路径簇分段结构

    Figure  6.   Sections of local path cluster of improved OpenPlanner algorithm

    图  7   有障碍物场景下局部路径规划仿真结果

    Figure  7.   Simulation results of local path planning in scenario with obstacle

    图  8   无障碍物场景下局部路径规划仿真结果

    Figure  8.   Simulation results of local path planning in scenario without obstacle

    图  9   局部路径跟踪对比

    Figure  9.   Comparison of local path tracking

    图  10   改进OpenPlanner算法实物实验

    Figure  10.   Physical experiment of improved OpenPlanner algorithm

    表  1   OpenPlanner算法改进前后实验结果

    Table  1   Experimental results before and after improvement of OpenPlanner algorithm

    场景算法路径长度/m规划耗时/ms平均曲率/m−1最大曲率/m−1
    无障碍物传统OpenPlanner算法16.5660.420.064 30.280 8
    改进OpenPlanner算法16.4130.550.044 20.171 9
    有障碍物传统OpenPlanner算法16.1350.470.035 50.155 4
    改进OpenPlanner算法16.0120.640.033 30.128 1
    下载: 导出CSV
  • [1] 孟明辉,周传德,陈礼彬,等. 工业机器人的研发及应用综述[J]. 上海交通大学学报,2016,50(增刊1):98-101.

    MENG Minghui,ZHOU Chuande,CHEN Libin,et al. A review of the research and development of industrial robots[J]. Journal of Shanghai Jiaotong University,2016,50(S1):98-101.

    [2]

    PADEN B,ČAP M,YONG S Z,et al. A survey of motion planning and control techniques for self-driving urban vehicles[J]. IEEE Transactions on Intelligent Vehicles,2016,1(1):33-55. DOI: 10.1109/TIV.2016.2578706

    [3]

    BUNIYAMIN N,NGAH W W,SARIFF N,et al. A simple local path planning algorithm for autonomous mobile robots[J]. International Journal of Systems Applications,Engineering & Development,2011,5(2):151-159.

    [4]

    KIRSANOV A,ANAVATTI S G,RAY T. Path planning for the autonomous underwater vehicle[C]. International Conference on Swarm,Evolutionary,and Memetic Computing,Berlin,2013:476-486.

    [5]

    ZHU Daqi,LI Weichong,YAN Mingzhong,et al. The path planning of AUV based on D-S information fusion map building and bio-inspired neural network in unknown dynamic environment[J]. International Journal of Advanced Robotic Systems,2014,11(3):34. DOI: 10.5772/56346

    [6]

    BOUNINI F,GINGRAS D,POLLART H,et al. Modified artificial potential field method for online path planning applications[C]. IEEE Intelligent Vehicles Symposium,Los Angeles,2017:180-185.

    [7] 霍凤财,迟金,黄梓健,等. 移动机器人路径规划算法综述[J]. 吉林大学学报(信息科学版),2018,36(6):639-647.

    HUO Fengcai,CHI Jin,HUANG Zijian,et al. A review of path planning algorithms for mobile robots[J]. Journal of Jilin University(Information Science Edition),2018,36(6):639-647.

    [8]

    FAN Xiaojing,GUO Yinjing,LIU Hui,et al. Improved artificial potential field method applied for AUV path planning[J]. Mathematical Problems in Engineering:Theory,Methods and Applications,2020(1):1-21.

    [9]

    ROSTAMI S M H,SANGAIAH A K,WANG Jin,et al. Obstacle avoidance of mobile robots using modified artificial potential field algorithm[J]. EURASIP Journal on Wireless Communications and Networking,2019(1):1-19.

    [10]

    BATISTA J,SOUZA D,SILVA J,et al. Trajectory planning using artificial potential fields with metaheuristics[J]. Latin America Transactions,2020,18(5):914-922. DOI: 10.1109/TLA.2020.9082920

    [11]

    KOBAYASHI M,MOTOI N. Local path planning:dynamic window approach with virtual manipulators considering dynamic obstacles[J]. IEEE Access,2022,10:17018-17029. DOI: 10.1109/ACCESS.2022.3150036

    [12]

    ZHANG Yi,XIAO Zhicheng,YUAN Xuexi,et al. Obstacle avoidance of two-wheeled mobile robot based on DWA algorithm[C]. Chinese Automation Congress,Hangzhou,2019:5701-5706.

    [13]

    GUAN Mingyang,WEN Changyun,WEI Zhe,et al. A dynamic window approach with collision suppression cone for avoidance of moving obstacles[C]. IEEE 16th International Conference on Industrial Informatics,Porto,2018:337-342.

    [14]

    CHEN Zhiming,WANG Ze,WU Miao,et al. Improved dynamic window approach for dynamic obstacle avoidance of quadruped robots[C]. The 46th Annual Conference of the IEEE Industrial Electronics Society,Singapore,2020:2780-2785.

    [15] 王永雄,田永永,李璇,等. 穿越稠密障碍物的自适应动态窗口法[J]. 控制与决策,2019,34(5):927-936.

    WANG Yongxiong,TIAN Yongyong,LI Xuan,et al. Self-adaptive dynamic window approach in dense obstacles[J]. Control and Decision,2019,34(5):927-936.

    [16] 魏立新,张钰锟,孙浩,等. 基于改进蚁群和DWA算法的机器人动态路径规划[J]. 控制与决策,2022,37(9):2211-2216.

    WEI Lixin,ZHANG Yukun,SUN Hao,et al. Robot dynamic path planning based on improved ant colony and DWA algorithm[J]. Control and Decision,2022,37(9):2211-2216.

    [17]

    DA SILVA I N,SPATTI D H,FLAUZINO R A,et al. Artificial neural networks[M]. Cham:Springer International Publishing Switzerland,2017:21-28.

    [18]

    DUGULEANA M,MOGAN G. Neural networks based reinforcement learning for mobile robots obstacle avoidance[J]. Expert Systems with Applications,2016,62:104-115. DOI: 10.1016/j.eswa.2016.06.021

    [19]

    XUE Yang. Mobile robot path planning with a non-dominated sorting genetic algorithm[J]. Applied Sciences,2018,8(11). DOI: 10.3390/app8112253.

    [20]

    JOSEF S,DEGANI A. Deep reinforcement learning for safe local planning of a ground vehicle in unknown rough terrain[J]. IEEE Robotics and Automation Letters,2020,5(4):6748-6755. DOI: 10.1109/LRA.2020.3011912

    [21]

    LEIVA F,RUIZ-DEL-SOLAR J. Robust RL-based map-less local planning:using 2D point clouds as observations[J]. IEEE Robotics and Automation Letters,2020,5(4):5787-5794. DOI: 10.1109/LRA.2020.3010732

    [22]

    DARWEESH H,TAKEUCHI E,TAKEDA K,et al. Open source integrated planner for autonomous navigation in highly dynamic environments[J]. Journal of Robotics and Mechatronics,2017,29(4):668-684. DOI: 10.20965/jrm.2017.p0668

  • 期刊类型引用(0)

    其他类型引用(4)

图(10)  /  表(1)
计量
  • 文章访问数:  303
  • HTML全文浏览量:  38
  • PDF下载量:  40
  • 被引次数: 4
出版历程
  • 收稿日期:  2023-08-29
  • 修回日期:  2023-12-25
  • 网络出版日期:  2024-01-03
  • 刊出日期:  2023-11-30

目录

    /

    返回文章
    返回