矿用高分辨电法监测系统设计

王冰纯

王冰纯. 矿用高分辨电法监测系统设计[J]. 工矿自动化,2023,49(10):118-126. DOI: 10.13272/j.issn.1671-251x.18101
引用本文: 王冰纯. 矿用高分辨电法监测系统设计[J]. 工矿自动化,2023,49(10):118-126. DOI: 10.13272/j.issn.1671-251x.18101
WANG Bingchun. Design of high-resolution electrical monitoring system for mining[J]. Journal of Mine Automation,2023,49(10):118-126. DOI: 10.13272/j.issn.1671-251x.18101
Citation: WANG Bingchun. Design of high-resolution electrical monitoring system for mining[J]. Journal of Mine Automation,2023,49(10):118-126. DOI: 10.13272/j.issn.1671-251x.18101

矿用高分辨电法监测系统设计

基金项目: 国家自然科学基金面上项目(42274248);陕西省自然科学基础研究计划面上项目(2023-JC-YB-215);天地科技股份有限公司科技创新创业资金专项项目(2022-3-TD-KJHZ001);山西省揭榜招标项目(20201101009-04)。
详细信息
    作者简介:

    王冰纯(1987—),男,陕西西安人,助理研究员,硕士,主要从事煤矿井下电磁法勘探装备研发及应用研究工作,E-mail:wangbingchun@cctegxian.com

  • 中图分类号: TD745

Design of high-resolution electrical monitoring system for mining

  • 摘要: 电阻率法是煤矿水害潜在风险判别、监测和预警的重要手段,也是矿井地质信息透明化的重要数据来源。进行井下电法监测时,单一的单巷电剖面法或双巷电透视法对富水区定位精度不高。此外,由于大规模电气设备产生的电磁干扰越来越强,传统的电法监测设备难以取得有效数据。针对上述问题,设计了一种矿用高分辨电法监测系统,该系统可在采动过程中实时进行单巷电剖面法及双巷电透视法数据的自动采集,并利用2种观测数据进行约束反演成像,提升了低阻异常体的成像分辨率。设计了二级放大及工频滤波电路,在进行电剖面和电透视数据采集时配置不同的采样时序、采样频率及数字滤波器,以抑制大规模电气设备对电法响应信号的干扰。性能测试结果表明,矿用高分辨电法监测系统可在噪声环境下有效分辨1 µV目标信号,在电透视模式和电剖面模式下,工频抑制比分别不低于35 dB和80 dB。水槽物理模拟试验结果表明,该系统可有效分辨在工作面倾向约为300 m时底板下60 m处大小约为10 m3的低阻异常体。测试和试验结果验证了该系统具有较强的工频干扰和随机干扰抑制能力,能够在煤矿有限的观测空间和强干扰条件下获得可靠有效的数据,提高了反演结果中异常体的成像分辨率。
    Abstract: The resistivity method is an important means for identifying, monitoring, and warning potential risks of coal mine water hazards, and also an important data source for transparency of mine geological information. When conducting underground electrical monitoring, the positioning precision of single roadway electrical profiling method or double roadway electrical perspective method for water rich areas is not high. In addition, due to the increasingly strong electromagnetic interference generated by large-scale electrical equipment, traditional electrical monitoring equipment is difficult to obtain effective data. In order to solve the above problems, a high-resolution electrical monitoring system for mining has been designed. The system can automatically collect data from single roadway electrical profile method and double roadway electrical perspective method in real-time during the mining process. The system uses two types of observation data for constrained inversion imaging, improving the imaging resolution of low resistance anomalous bodies. A two-stage amplification and power frequency filtering circuit is designed to configure different sampling timing, sampling frequency, and digital filters during the collection of electrical profile and perspective data. It will suppress the interference of large-scale electrical equipment on electrical response signals. The performance test results show that the high-resolution electrical monitoring system for mining can effectively distinguish 1 µV target signal in noisy environments. The power frequency suppression ratio is not less than 35 dB and 80 dB in the electric perspective mode and electric profile mode, respectively. The results of the physical simulation test in the water tank indicate that the system can effectively distinguish low resistance anomalous bodies with a size of approximately 10 m3 at a depth of 60 meters below the floor when the working face is inclined towards about 300 meters. The test and experimental results have verified that the system has strong power frequency interference and random interference suppression capabilities. The system can obtain reliable and effective data under limited observation space and strong interference conditions in coal mines, improving the imaging resolution of abnormal bodies in inversion results.
  • 图  1   矿用高分辨电法监测系统组成

    Figure  1.   Composition of high-resolution electrical monitoring system

    图  2   监测主机组成

    Figure  2.   The components of monitoring host

    图  3   AD转换电路

    Figure  3.   Analog-to-digital conversion circuit

    图  4   采样参数设置流程

    Figure  4.   Sampling parameter setting process

    图  5   高分辨电法监测系统采集控制软件

    Figure  5.   Sampling control software for high-resolution electrical monitoring system

    图  6   频率为1 200 Hz时的采样信号波形

    Figure  6.   Sampling signal waveform at a frequency of 1 200 Hz

    图  7   50 Hz采样频率下的数据采集结果

    Figure  7.   Data collection results at a sampling frequency of 50 Hz

    图  8   最小信号分辨力测试网络

    Figure  8.   Minimum signal resolution test network

    图  9   噪声环境下微弱信号分辨率测试结果

    Figure  9.   Weak signal resolution test in noisy environment

    图  10   水槽物理模拟试验装置

    Figure  10.   device of physical simulation test in the water tank

    图  11   不同深度下反演成像结果

    Figure  11.   Inversion imaging results at different depths

    图  12   不同电法监测系统原始采集数据对比

    Figure  12.   Comparison of original data collected by different electrical monitoring systems

    表  1   不同采样频率下50 Hz工频抑制比

    Table  1   50 Hz power frequency suppression ratio at different sampling frequencies

    采样频率/Hz工频抑制比/dB
    1 20037.39
    2 40037.41
    4 80037.38
    7 20037.39
    14 40037.41
    下载: 导出CSV
  • [1] 王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1-27. DOI: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001

    WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1-27. DOI: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001

    [2] 尹尚先,连会青,刘德民,等. 华北型煤田岩溶陷落柱研究70年:成因·机理·防治[J]. 煤炭科学技术,2019,47(11):1-29. DOI: 10.13199/j.cnki.cst.2019.11.001

    YIN Shangxian,LIAN Huiqing,LIU Demin,et al. 70 years of investigation on karst collapse column in North China Coalfield:cause of origin,mechanism and prevention[J]. Coal Science and Technology,2019,47(11):1-29. DOI: 10.13199/j.cnki.cst.2019.11.001

    [3] 董书宁,刘再斌,程建远,等. 煤炭智能开采地质保障技术及展望[J]. 煤田地质与勘探,2021,49(1):21-31. DOI: 10.3969/j.issn.1001-1986.2021.01.003

    DONG Shuning,LIU Zaibin,CHENG Jianyuan,et al. Technologies and prospect of geological guarantee for intelligent coal mining[J]. Coal Geology & Exploration,2021,49(1):21-31. DOI: 10.3969/j.issn.1001-1986.2021.01.003

    [4] 王国法,富佳兴,孟令宇. 煤矿智能化创新团队建设与关键技术研发进展[J]. 工矿自动化,2022,48(12):1-15. DOI: 10.13272/j.issn.1671-251x.18060

    WANG Guofa,FU Jiaxing,MENG Lingyu. Development of innovation team construction and key technology research in coal mine intelligence[J]. Journal of Mine Automation,2022,48(12):1-15. DOI: 10.13272/j.issn.1671-251x.18060

    [5] 刘斌,李术才,李树忱,等. 电阻率层析成像法监测系统在矿井突水模型试验中的应用[J]. 岩石力学与工程学报,2010,29(2):297-307.

    LIU Bin,LI Shucai,LI Shuchen,et al. Application of electrical resistivity tomography monitoring system to mine water inrush model test[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(2):297-307.

    [6] 张平松,刘盛东,吴荣新,等. 采煤面覆岩变形与破坏立体电法动态测试[J]. 岩石力学与工程学报,2009,28(9):1870-1875. DOI: 10.3321/j.issn:1000-6915.2009.09.019

    ZHANG Pingsong,LIU Shengdong,WU Rongxin,et al. Dynamic detection of overburden deformation and failure in mining workface by 3D resistivity method[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(9):1870-1875. DOI: 10.3321/j.issn:1000-6915.2009.09.019

    [7] 刘树才,刘鑫明,姜志海,等. 煤层底板导水裂隙演化规律的电法探测研究[J]. 岩石力学与工程学报,2009,28(2):348-356. DOI: 10.3321/j.issn:1000-6915.2009.02.019

    LIU Shucai,LIU Xinming,JIANG Zhihai,et al. Research on electrical prediction for evaluating water conducting fracture zones in coal seam floor[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):348-356. DOI: 10.3321/j.issn:1000-6915.2009.02.019

    [8] 张玉军,张志巍,肖杰,等. 承压水体上煤层底板下位隐伏断层采动突水机制研究[J]. 煤炭科学技术,2023,51(2):283-291. DOI: 10.13199/j.cnki.cst.2022-1698

    ZHANG Yujun,ZHANG Zhiwei,XIAO Jie,et al. Study on mining water inrush mechanism of buried fault under coal seam floor above confined water body[J]. Coal Science and Technology,2023,51(2):283-291. DOI: 10.13199/j.cnki.cst.2022-1698

    [9] 李建楼,刘盛东,张平松,等. 并行网络电法在煤层覆岩破坏监测中的应用[J]. 煤田地质与勘探,2008,36(2):61-64. DOI: 10.3969/j.issn.1001-1986.2008.02.016

    LI Jianlou,LIU Shengdong,ZHANG Pingsong,et al. Failure dynamic observation of upper covered stratum under mine using parallel network electricity method[J]. Coal Geology & Exploration,2008,36(2):61-64. DOI: 10.3969/j.issn.1001-1986.2008.02.016

    [10] 鲁晶津,王冰纯,李德山,等. 矿井电阻率法监测系统在采煤工作面水害防治中的应用[J]. 煤田地质与勘探,2022,50(1):36-44. DOI: 10.12363/issn.1001-1986.21.10.0596

    LU Jingjin,WANG Bingchun,LI Deshan,et al. Application of mine-used resistivity monitoring system in working face water disaster control[J]. Coal Geology & Exploration,2022,50(1):36-44. DOI: 10.12363/issn.1001-1986.21.10.0596

    [11] 鲁晶津,王冰纯,颜羽. 矿井电法在煤层采动破坏和水害监测中的应用进展[J]. 煤炭科学技术,2019,47(3):18-26. DOI: 10.13199/j.cnki.cst.2019.03.003

    LU Jingjin,WANG Bingchun,YAN Yu. Advances of mine electrical resistivity method applied in coal seam mining destruction and water inrush monitoring[J]. Coal Science and Technology,2019,47(3):18-26. DOI: 10.13199/j.cnki.cst.2019.03.003

    [12] 鲁晶津. 直流电阻率法在煤层底板水害监测中的应用研究[J]. 工矿自动化,2021,47(2):18-25. DOI: 10.13272/j.issn.1671-251x.2020080070

    LU Jingjin. Research on the application of direct current resistivity method in coal seam floor water inrush monitoring[J]. Industry and Mine Automation,2021,47(2):18-25. DOI: 10.13272/j.issn.1671-251x.2020080070

    [13] 靳德武,赵春虎,段建华,等. 煤层底板水害三维监测与智能预警系统研究[J]. 煤炭学报,2020,45(6):2256-2264. DOI: 10.13225/j.cnki.jccs.ZN20.0309

    JIN Dewu,ZHAO Chunhu,DUAN Jianhua,et al. Research on 3D monitoring and intelligent early warning system for water hazard of coal seam floor[J]. Journal of China Coal Society,2020,45(6):2256-2264. DOI: 10.13225/j.cnki.jccs.ZN20.0309

    [14] 鲁晶津. 工作面采动破坏过程电阻率动态响应特征研究[J]. 工矿自动化,2023,49(1):36-45,108.

    LU Jingjin. Study on dynamic response characteristics of resistivity in mining failure process of working face[J]. Journal of Mine Automation,2023,49(1):36-45,108.

    [15] 王家臣,许延春,徐高明,等. 矿井电剖面法探测工作面底板破坏深度的应用[J]. 煤炭科学技术,2010,38(1):97-100. DOI: 10.13199/j.cst.2010.01.102.wangjch.027

    WANG Jiachen,XU Yanchun,XU Gaoming,et al. Application of mine electric profiling method to detect floor failure depth of coal mining face[J]. Coal Science and Technology,2010,38(1):97-100. DOI: 10.13199/j.cst.2010.01.102.wangjch.027

    [16] 张平松,凡净,吴荣新,等. 大倾角煤层工作面底板岩层富水异常区探查方法研究[J]. 采矿与安全工程学报,2015,32(4):639-643. DOI: 10.13545/j.cnki.jmse.2015.04.019

    ZHANG Pingsong,FAN Jing,WU Rongxin,et al. Study on detection method of anomaly watery area for the floor rock stratum of the working face with high dip angle[J]. Journal of Mining & Safety Engineering,2015,32(4):639-643. DOI: 10.13545/j.cnki.jmse.2015.04.019

    [17] 吴荣新,刘盛东,张平松. 双巷并行三维电法探测煤层工作面底板富水区[J]. 煤炭学报,2010,35(3):454-457. DOI: 10.13225/j.cnki.jccs.2010.03.017

    WU Rongxin,LIU Shengdong,ZHANG Pingsong. The exploration of two-gateways parallel 3-D electrical technology for water-rich area within coal face floor[J]. Journal of China Coal Society,2010,35(3):454-457. DOI: 10.13225/j.cnki.jccs.2010.03.017

    [18] 胡雄武,孟当当,张平松,等. 采煤工作面底板水视电阻率全方位探测方法[J]. 煤炭学报,2019,44(8):2369-2376. DOI: 10.13225/j.cnki.jccs.KJ19.0581

    HU Xiongwu,MENG Dangdang,ZHANG Pingsong,et al. An all-directional detection method of apparent resistivity for water from the floor strata of coal-mining face[J]. Journal of China Coal Society,2019,44(8):2369-2376. DOI: 10.13225/j.cnki.jccs.KJ19.0581

    [19] GB/T 3836.4—2021爆炸性环境 第4部分:由本质安全型“i”保护的设备[S

    GB/T 3836.4-2021 Explosive atmospheres-Part 4:Equipment protection by intrinsic safety “i”[S

    [20] 廖志强,陈东春,刘水文. 煤矿井下电磁干扰源及抗干扰技术研究[J]. 工矿自动化,2012,38(7):25-28.

    LIAO Zhiqiang,CHEN Dongchun,LIU Shuiwen. Research of underground electromagnetic interference sources and anti-interference technology[J]. Industry and Mine Automation,2012,38(7):25-28.

    [21] 邹哲强,庄捷,屈世甲. 煤矿井下中低频段电磁干扰测量与分析[J]. 工矿自动化,2013,39(5):1-5. DOI: 10.7526/j.issn.1671-251X.2013.05.001

    ZOU Zheqiang,ZHUANG Jie,QU Shijia. Measurement and analysis of underground electromagnetic interference of medium and low frequency band[J]. Industry and Mine Automation,2013,39(5):1-5. DOI: 10.7526/j.issn.1671-251X.2013.05.001

    [22] 鲁晶津,王云宏,崔伟雄,等. 矿井水害音频电透视法监测水槽物理模拟试验研究[J/OL]. 煤炭科学技术:1-10 [2023-03-11]. DOI: 10.13199/j.cnki.cst.2022-1354.

    LU Jingjin,WANG Yunhong,CUI Weixiong,et al. Study on physical simulation of mine water disaster monitoring by audio frequency electrical resistivity perspective method in water tank[J/OL]. Coal Science and Technology:1-10 [2023-03-11]. DOI: 10.13199/j.cnki.cst.2022-1354.

    [23] 李博凡,刘磊,范涛,等. 煤矿井下定向钻孔中电阻率探测技术与应用[J]. 煤田地质与勘探,2022,50(1):52-58. DOI: 10.12363/issn.1001-1986.21.11.0688

    LI Bofan,LIU Lei,FAN Tao,et al. Resistivity detection and its application in underground coal mine directional boreholes[J]. Coal Geology & Exploration,2022,50(1):52-58. DOI: 10.12363/issn.1001-1986.21.11.0688

    [24] 徐聪辉,李彩,张振昭. ADS1262多通道数据采集系统设计[J]. 中国测试,2019,45(9):112-117. DOI: 10.11857/j.issn.1674-5124.2018120088

    XU Conghui,LI Cai,ZHANG Zhenzhao. Design of multi-channel data acquisition system based on ADS1262[J]. China Measurement & Test,2019,45(9):112-117. DOI: 10.11857/j.issn.1674-5124.2018120088

  • 期刊类型引用(1)

    1. 杨宁. 不连沟煤矿F6225工作面电阻率监测实践研究. 能源与环保. 2024(10): 119-123+134 . 百度学术

    其他类型引用(1)

图(12)  /  表(1)
计量
  • 文章访问数:  199
  • HTML全文浏览量:  62
  • PDF下载量:  27
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-04-05
  • 修回日期:  2023-10-10
  • 网络出版日期:  2023-10-23
  • 刊出日期:  2023-10-24

目录

    /

    返回文章
    返回