煤矿安全大数据特征及治理方法体系研究

Research on the coal mine safety big data features and governance method system

  • 摘要: 高效分析利用煤矿安全大数据,对于提高煤矿的安全管理水平和生产效率具有重要意义。目前煤矿安全大数据治理存在数据特征不明、治理方法不清等问题,针对该问题,着重分析了煤矿安全大数据特征,得出煤矿安全大数据具有5V特征,即数据体量大(Volume)、数据类型多(Variety)、处理速度快(Velocity)、价值密度低(Value)、真实性(Veracity) ,此外还具有结构化程度不一致的特征。介绍了可应用于煤矿安全管理中的主要数据治理方法及模型,并分为单变量方法、多变量统计分析方法、智能模式识别方法、系统动力学模型和综合集成模型五大类。从主体和客体的视角,提出了煤矿安全大数据治理方法体系,认为数据治理方法的选择必须与智慧矿山的主体、客体的数据治理目标相契合。基于主体的治理方法选择:根据数据主体的需求、层次、担负的任务及安全管理目标确定数据治理具体内容;基于客体的治理方法选择:根据客体对象的时效性、吞吐量要求及安全管理目标确定数据治理具体内容。最后得出煤矿安全大数据治理方法的确定需要在统一目标和统一标准下,根据作用域和作用对象的不同,满足共性和个性需求。

     

    Abstract: Efficient analysis and utilization of coal mine safety big data is of great significance for improving the safety management level and production efficiency of coal mines. At present, there are some problems in coal mine safety big data governance, such as unclear data features and governance methods. In order to solve the above problems, this paper emphatically analyzes the features of coal mine safety big data. It is concluded that coal mine safety big data has 5V features, namely, large data volume (Volume), multiple data varieties (Variety), fast processing velocity (Velocity), low value density (Value), veracity (Veracity), and also has the features of inconsistent structural degree. This paper introduces the main data governance methods and models that can be applied to coal mine safety management. The methods are divided into five categories: single variable method, multivariate statistical analysis method, intelligent pattern recognition method, system dynamics model and comprehensive integration model. From the perspective of the subject and object, this paper puts forward a big data governance method system for coal mine safety. It is believed that the selection of data governance methods must be consistent with the data governance goals of the subject and object of intelligent mines. Selection of subject-based governance methods: the specific content of data governance is determined according to the needs, levels, tasks and security management objectives of data subjects. Selection of object-based governance methods: the specific content of data governance is determined according to the timeliness of object objects, throughput requirements and security management objectives. Finally, it is concluded that the determination of coal mine safety big data governance method needs to meet the common and individual needs according to the different scopes and objects under the unified goal and standard.

     

/

返回文章
返回