基于ADS和HFSS的矿井UWB射频前端电磁联合仿真方法

Mine UWB radio frequency front-end electromagnetic co-simulation method based on ADS and HFSS

  • 摘要: 射频前端是矿井超宽带(UWB)定位系统的重要组成部分,其电磁性能影响定位精度。目前UWB定位系统射频前端设计一般针对单独器件或芯片使用ADS或HFSS进行仿真设计,随着射频前端设计的频段越来越高,分立元件、传输线等三维结构之间引起的寄生效应对射频前端电路性能的影响越来越大,需要研究板级射频前端电磁联合仿真方法。针对上述问题,提出了一种基于ADS和HFSS的矿井UWB射频前端电磁联合仿真方法。首先,采用HFSS软件对无源器件进行建模,并用HFSS软件直接进行仿真得到对应的snp文件。然后,使用ADS软件建立有源器件原理图,将参数读取控件和原理图连接,并将snp文件导入控件中。最后,在ADS中对原理图进行仿真,ADS和HFSS之间通过S参数作为媒介来进行联合操作,实现UWB射频前端电磁特性的联合仿真。综合运用ADS和HFSS对UWB射频前端有源器件、无源器件及整体板级电路进行联合仿真,并根据仿真原理制作测试样品,实验结果表明,联合仿真结果与样品实测结果匹配,可用于UWB射频前端设计和电磁性能综合测试。将以电磁联合仿真方法设计的射频前端制作成PCB样品并用于UWB定位系统进行定位极限距离测试,测试结果表明,以电磁联合仿真方法设计的射频前端完全可以满足实际产品性能需求,在设计阶段对实际产品效果预测准确,提高了设计效率,降低了设计成本。

     

    Abstract: The radio frequency front-end is an important part of mine ultra-wideband (UWB) positioning system. Its electromagnetic performance affects positioning precision. At present, the RF front-end design of the UWB positioning system is generally simulated by ADS or HFSS for single device or chip. With the increasing frequency band of RF front-end design, the parasitic effect caused by three-dimensional structures such as discrete components and transmission lines has more and more influence on the performance of RF front-end circuits. It is necessary to study the electromagnetic co-simulation method of the board-level RF front-end. In order to solve the above problems, a mine UWB RF front-end electromagnetic co-simulation method based on ADS and HFSS is proposed. Firstly, the passive device is modeled by HFSS software. The corresponding snp file is obtained by directly simulating with HFSS software. Secondly, ADS software is used to build the schematic diagram of active devices, connect the parameter reading control with the schematic diagram, and import the snp file into the control. Finally, the schematic diagram is simulated in ADS, and the joint operation between ADS and HFSS is realized through S parameters as the medium to realize the joint simulation of UWB RF front-end electromagnetic characteristics. ADS and HFSS are used to co-simulate the active components, passive components and the whole board-level circuit of the UWB RF front-end. The test samples are made according to the simulation principle. The experimental results show that the co-simulation results match the measured results of the samples. It can be used for the design of the UWB RF front-end and the comprehensive test of electromagnetic performance. The RF front-end designed by the electromagnetic co-simulation method is made into a PCB sample and used in a UWB positioning system to test the positioning limit distance. The test results show that the RF front-end designed by the electromagnetic co-simulation method can completely meet the performance requirements of the actual product. It can accurately predict the effect of the actual product in the design stage, improve the design efficiency and reduce the design cost.

     

/

返回文章
返回