Research on digital mine all-optical network based on 5G C-RAN technology
-
摘要: 建设数字化矿山的首要问题之一是构建一张低时延、大带宽、高可靠的高品质信息网络,WiFi、4G等传统无线通信技术已无法满足矿山数字化转型的新需求。从数字化矿山对通信网络的需求出发,研究了5G技术在井下矿山应用的必要性和部署难点,指出基于集中式无线接入网(C−RAN)的井下5G组网方案可有效降低5G网络在井下的部署要求和难度,但须解决光纤资源消耗大、“哑资源”故障管理难2个问题。提出了基于5G C−RAN技术的数字化矿山全光网系统,从C−RAN接入网、高速全光网、智能管控平台3个层面阐述了系统架构,并研究了半有源光网络架构、低成本波分复用(WDM)高速传输、智能管控平台等关键技术。该系统采用直检WDM技术节省光纤资源,可将光纤使用数量减少91.67%,同时基于半有源架构、调顶操作维护管理(OAM)技术实现对光纤网络的低成本管控和灵活部署,破解井下巷道光纤资源紧张和光纤网络管理难题。实验结果表明:12个不同波长WDM光模块的发送光功率为3.5~5.2 dBm,接收灵敏度为−16.9~−19.0 dBm,链路预算能力可达21 dB以上,满足应用要求;消光比为4.7~5.1 dB,眼图裕量大于17.5%,表明了较高的信号质量;在低温−40 ℃和高温85 ℃下,WDM光模块发送光功率、接收灵敏度均存在一定性能劣化,但仍然能够满足10 km传输需求。现场应用结果表明,12个不同波长WDM光模块的发送光功率为3.7~5.6 dBm,接收灵敏度为−17.9 ~ −16.3 dBm,其中最差通道的链路预算能力仍在20.2 dB以上,满足应用要求。Abstract: One of the primary issues in building a digital mine is to build a high-quality information network with low latency, large bandwidth, and high reliability. Traditional wireless communication technologies such as WiFi and 4G have been unable to meet the new demand of the digital transformation of mines. Starting from the demand for communication networks in digital mines, the necessity and deployment difficulties of 5G technology in underground mines are studied. It is pointed out that the underground 5G networking scheme based on centralized-radio access network (C-RAN) can effectively reduce the deployment requirements and difficulties of 5G networks in underground mines. However, two issues, the high consumption of optical fiber resources and the difficulty in managing dumb resource failures, must be addressed. A digital mine all-optical network system based on 5G C-RAN technology is proposed. The system architecture is introduced from three levels: C-RAN access network, high-speed all-optical network, and intelligent control platform. Key technologies such as semi-active optical network architecture, low-cost wavelength division multiplexing (WDM) high-speed transmission, and intelligent control platform are studied. The system uses direct inspection WDM technology to save optical fiber resources, which can reduce the number of optical fibers used by 91.67%. At the same time, based on semi-active architecture and topping operation administration and maintenance (OAM) technology, it achieves low-cost control and flexible deployment of optical fiber networks. It solves the tight optical fiber resources and optical fiber network management challenges in underground roadways. The experimental results show that the transmission optical power of 12 WDM optical modules with different wavelengths is 3.5 dBm to 5.2 dBm. The reception sensitivity is −16.9 dBm to −19.0 dBm, and the link budget capacity can reach over 21 dB, meeting application requirements. The extinction ratio ranges from 4.7 dB to 5.1 dB, and the eye pattern margin is greater than 17.5%, indicating high signal quality. At a low temperature of − 40 ℃ and a high temperature of 85 ℃, the WDM optical module has some performance degradation in both transmission optical power and reception sensitivity. But it can still meet the transmission requirements of 10 km. Field application results show that the transmission optical power of 12 WDM optical modules with different wavelengths is 3.7 dBm to 5.6 dBm, and the reception sensitivity is −17.9 dBm to −16.3 dBm. The link budget capability of the worst channel is still above 20.2 dB, meeting application requirements.
-
-
-
[1] 牛锐,陈鲜岷. 矿山自动化设备研究及实践应用[J]. 现代工业经济和信息化,2021,11(9):139-140. NIU Rui,CHEN Xianmin. Research and practical application of mine automation equipment[J]. Modern Industrial Economy and Informationization,2021,11(9):139-140.
[2] 陈龙,王晓,杨健健,等. 平行矿山:从数字孪生到矿山智能[J]. 自动化学报,2021,47(7):1633-1645. DOI: 10.16383/j.aas.2021.y000001 CHEN Long,WANG Xiao,YANG Jianjian,et al. Parallel mining operating systems:from digital twins to mining intelligence[J]. Acta Automatica Sinica,2021,47(7):1633-1645. DOI: 10.16383/j.aas.2021.y000001
[3] 马小平,胡延军,缪燕子. 物联网、大数据及云计算技术在煤矿安全生产中的应用研究[J]. 工矿自动化,2014,40(4):5-9. DOI: 10.13272/j.issn.1671-251x.2014.04.002 MA Xiaoping,HU Yanjun,MIAO Yanzi. Application research of technologies of Internet of things,big data and cloud computing in coal mine safety production[J]. Industry and Mine Automation,2014,40(4):5-9. DOI: 10.13272/j.issn.1671-251x.2014.04.002
[4] 王杰. 数字化矿山系统及智能化在矿井中的应用[J]. 矿业装备,2022(2):194-195. DOI: 10.3969/j.issn.2095-1418.2022.02.091 WANG Jie. Application of digital mine system and intelligence in mine[J]. Mining Equipment,2022(2):194-195. DOI: 10.3969/j.issn.2095-1418.2022.02.091
[5] 吕鹏飞,郭军. 我国煤矿数字化矿山发展现状及关键技术探讨[J]. 工矿自动化,2009,35(9):16-20. LYU Pengfei,GUO Jun. Discussion on development situation and key technologies of digital mine in China[J]. Industry and Mine Automation,2009,35(9):16-20.
[6] 陈磊. 关于数字化矿山系统分析及智能化在矿井中的应用探讨[J]. 科学与信息化,2021(1):114. CHEN Lei. Digital mine system analysis and discussion on the application of intelligence in mine[J]. Science and Information,2021(1):114.
[7] 霍振龙,张袁浩. 5G通信技术及其在煤矿的应用构想[J]. 工矿自动化,2020,46(3):1-5. HUO Zhenlong,ZHANG Yuanhao. 5G communication technology and its application conception in coal mine[J]. Industry and Mine Automation,2020,46(3):1-5.
[8] 张立亚. 煤矿5G通信系统安全应用技术研究[J]. 工矿自动化,2021,47(12):8-12. DOI: 10.13272/j.issn.1671-251x.17854 ZHANG Liya. Research on safety application technology of coal mine 5G communication system[J]. Industry and Mine Automation,2021,47(12):8-12. DOI: 10.13272/j.issn.1671-251x.17854
[9] CHIH-LIN I, HUANG Jinri. RAN revolution with NGFI (xHaul) for 5G[C]. Optical Fiber Communications Conference and Exhibition, Los Angeles, 2017.
[10] LEVRAU L, REMEDIOS D. Guidelines for a cost optimised 5G WDM-based fronthaul network[C]. European Conference on Optical Communication, Bordeaux, 2021.
[11] HONDA K, KOBAYASHI T, SHIMADA T, et al. WDM passive optical network managed with embedded pilot tone for mobile fronthaul[C]. European Conference on Optical Communication, Valencia, 2015.
[12] SUN Han,TORBATIAN M,KARIMI M,et al. 800 G DSP ASIC design using probabilistic shaping and digital sub-carrier multiplexing[J]. Journal of Lightwave Technology,2020,38(17):4744-4756. DOI: 10.1109/JLT.2020.2996188
[13] XU Mengyue,ZHU Yuntao,PITTALÀ F,et al. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission[J]. Optica,2022,9(1):61-62. DOI: 10.1364/OPTICA.449691
[14] GE Dawei, ZHANG Houyuan, YU Cong, et al. Real-time 10-λ×800 Gb/s sub-carrier-multiplexing 95 GBd DP-64QAM-PCS transmission over 2018 km G. 654. E fibre with pure backward distributed raman amplification[C]. European Conference on Optical Communication, Basel, 2022.
[15] 荆瑞泉. 40GE/100GE和并行OTN接口的标准化和设备发展现状[J]. 电信科学,2012,28(8):120-123. JING Ruiquan. Standardization and equipment status of 40GE/100GE and parallel OTN interface[J]. Telecommunications Science,2012,28(8):120-123.
[16] PAN Hui. Terabit BiDi MSA targets 800 G,1.6 T over data center multimode fiber[J]. Fiber Optics & Communications:Monthly Newsletter Lovering Domestic & International News on Fiber Optic Communications and Related Fields,2022,45(2):13.
[17] 邓琨,高万超,陈意,等. 400 Gbit/s FR4光收发模块的研究[J]. 光通信研究,2021(3):43-47. DENG Kun,GAO Wanchao,CHEN Yi,et al. Research on 400 Gbit/s FR4 optical transceiver module[J]. Study on Optical Communications,2021(3):43-47.
[18] ITU-T G. 694.2: spectral grids for WDM applications: CWDM wavelength grid[S].
[19] ITU-T G. OWDM: multichannel WDM applications with single-channel optical interfaces in the O-band[S].
[20] ITU-T G. OWDM2: alternative approach for multi-channel bi-directional MWDM applications with single-channel optical interfaces in the O-band, optimized for 5 km distances[S].
[21] ITU-T G. 698.4: multichannel bi-directional DWDM applications with port agnostic single-channel optical interfaces[S].
[22] YD/T 4013.4—2022: 城域N×25 Gbit/s波分复用(WDM)系统技术要求 第4部分: MWDM[S]. YD/T 4013.4-2022: technical requirements for metropolitan N × 25 Gbit/s wavelength division multiplexing (WDM) systems Part 4: MWDM[S].
-
期刊类型引用(14)
1. 曹现刚,段雍,王国法,赵江滨,任怀伟,赵福媛,杨鑫,张鑫媛,樊红卫,薛旭升,李曼. 煤矿设备全寿命周期健康管理与智能维护研究综述. 煤炭学报. 2025(01): 694-714 . 百度学术
2. 曹建文. 分布式电牵引采煤机健康状态监控系统设计. 煤矿机械. 2023(03): 213-216 . 百度学术
3. 赵海发,张成华. 基于LS-DYNA的采煤机滚筒多参数优化设计. 制造业自动化. 2023(03): 144-147 . 百度学术
4. 钱江泳. 采煤机实时健康状态与健康度指示系统开发. 煤矿机电. 2023(02): 22-26 . 百度学术
5. 曹现刚,段雍,赵江滨,杨鑫,赵福媛,樊红卫. 综采设备健康状态评估研究综述. 工矿自动化. 2023(09): 23-35+97 . 本站查看
6. 曹现刚,许欣,雷卓,李彦川. 基于降噪自编码器与改进卷积神经网络的采煤机健康状态识别. 信息与控制. 2022(01): 98-106 . 百度学术
7. 林江. 电牵引采煤机健康度智能评价系统和方法. 煤矿机械. 2022(07): 146-148 . 百度学术
8. 胡金成. 主动半监督RVFLN方法在重介质选煤过程的应用. 中国矿业大学学报. 2022(06): 1232-1240 . 百度学术
9. 严周民,艾志亮,宋学伟. 基于迁移学习的采煤机摇臂传动故障研究. 能源与环保. 2021(05): 196-201 . 百度学术
10. 张俭让,刘睿卿,李学文,王智鹏,史振东. 采煤机运行状态数据分布式实时预测模型. 工矿自动化. 2021(07): 21-28 . 本站查看
11. 包从望,江伟,刘永志,车守全. 基于卷积神经网络的采煤机截割部减速器故障诊断研究. 机电工程. 2021(10): 1317-1323+1331 . 百度学术
12. 马忠昌. 采煤机检修电动机常见故障分析. 中国新技术新产品. 2020(16): 39-40 . 百度学术
13. 马宏伟,聂珍,王川伟,薛旭升,夏晶. 煤矿机器人关键共性技术与发展策略. 智能矿山. 2020(01): 63-70 . 百度学术
14. 曹现刚,马宏伟,段雍,徐田波,王岩,李鹏飞. 煤矿设备智能维护与健康管理技术研究现状与展望. 智能矿山. 2020(01): 105-111 . 百度学术
其他类型引用(6)