工作面采动破坏过程电阻率动态响应特征研究

鲁晶津

鲁晶津. 工作面采动破坏过程电阻率动态响应特征研究[J]. 工矿自动化,2023,49(1):36-45, 108. DOI: 10.13272/j.issn.1671-251x.18052
引用本文: 鲁晶津. 工作面采动破坏过程电阻率动态响应特征研究[J]. 工矿自动化,2023,49(1):36-45, 108. DOI: 10.13272/j.issn.1671-251x.18052
LU Jingjin. Study on dynamic response characteristics of resistivity in mining failure process of working face[J]. Journal of Mine Automation,2023,49(1):36-45, 108. DOI: 10.13272/j.issn.1671-251x.18052
Citation: LU Jingjin. Study on dynamic response characteristics of resistivity in mining failure process of working face[J]. Journal of Mine Automation,2023,49(1):36-45, 108. DOI: 10.13272/j.issn.1671-251x.18052

工作面采动破坏过程电阻率动态响应特征研究

基金项目: 国家自然科学基金面上项目(42274184);陕西省自然科学基础研究计划重点项目(2022JZ-16);天地科技股份有限公司科技创新创业资金专项(2022-3-TD-KJHZ001)
详细信息
    作者简介:

    鲁晶津(1983—),女,湖北随州人,副研究员,博士,主要从事矿井电磁法勘探及其应用研究工作,E-mail:lujingjin@cctegxian.com

  • 中图分类号: TD745

Study on dynamic response characteristics of resistivity in mining failure process of working face

  • 摘要: 矿井电阻率法在采煤工作面水害隐患监测中发挥着重要作用,但工作面采动破坏过程的异常响应会对底板水害隐患的识别形成较大干扰。为了提高矿井电阻率法对采煤工作面底板水害隐患监测的解释精度,同步考虑覆岩破坏和底板破坏的影响,建立工作面采动破坏过程动态地电模型,通过矿井电阻率法三维数值模拟和反演成像,分别进行顶板监测和底板监测,分析采动破坏过程的电阻率动态响应特征,识别和提取底板水害隐患的电阻率响应特征。分析结果表明:采动破坏过程形成的电阻率异常区随回采工作面推进向前移动,在超前支撑压力的作用范围内会出现相对低阻异常,在采空区范围内会出现相对高阻异常;工作面固定位置的电阻率响应在回采过程中会经历先降低、后升高、再降低的过程,该过程与工作面回采过程中顶底板经历的周期性应力变化和破坏过程基本一致;底板水害隐患的低阻异常响应强度与其相对回采工作面的位置有关,当底板水害隐患的展布范围与采空区范围有所重合时,采空区的高阻异常响应会削弱底板水害隐患的低阻异常响应;当底板水害隐患的展布范围与超前支撑压力影响区范围有所重合时,二者的低阻异常响应会叠加在一起,使低阻异常响应得到一定幅度的增强;针对底板水害隐患进行纯异常提取后,可以消除采动破坏过程的影响,不同位置的底板水害隐患其纯异常响应强度基本一致,其垂向影响范围均大于采动破坏的垂向影响范围。
    Abstract: The mine resistivity method plays an important role in monitoring hidden danger of water hazards in coal working face. However, the abnormal response of mining failure process of coal working face will interfere with the identification of hidden danger of floor water hazards. In order to improve the interpretation precision of the mine resistivity method for monitoring hidden danger of floor water hazard in coal working face, simultaneously considering the influence of overburden failure and floor failure, a dynamic geoelectric model of the mining failure process in coal working face is established. The roof monitoring and floor monitoring are respectively carried out through three-dimensional numerical simulation and inversion imaging of mine resistivity method. The dynamic response characteristics of resistivity in the mining failure process are analyzed. The resistivity response characteristics of floor water hazard are identified and extracted. The analysis results show that the resistivity anomaly area formed in the process of mining failure moves forward with the advancing of the working face. There will be relatively low resistivity anomaly in the action range of the advance support pressure, and relatively high resistivity anomaly in the goaf area. The resistivity response at the fixed position of the working face will experience a process of first decreasing, then increasing, and then decreasing in the mining process. This process is basically consistent with the periodic stress change and failure process of the roof and floor in the mining process of the working face. The low resistance abnormal response intensity of floor water hazard is related to its position relative to the working face. When the distribution range of floor water hazard overlaps with that of goaf, the high resistance abnormal response of goaf will weaken the low resistance abnormal response of floor water hazard. When the distribution range of floor water hazard danger overlaps with the area affected by the advance support pressure, the low resistance abnormal response of the two will be superimposed together. The low resistance abnormal response can be enhanced to a certain extent. The influence of the mining damage process can be eliminated after the pure anomaly extraction of the hidden danger of floor water hazard. The pure abnormal response intensity of floor water hazards at different positions is basically the same, and their vertical influence scope is larger than that of mining damage.
  • 图  1   电阻率三维反演流程

    Figure  1.   Flow of 3D eletrical resistivity inversion

    图  2   工作面采动破坏模型

    Figure  2.   Mining failure model of working face

    图  3   工作面采动破坏过程顶板监测反演成像结果

    Figure  3.   Roof monitoring and inversion imaging results for mining failure process in working face

    图  4   工作面采动破坏过程底板监测反演成像结果

    Figure  4.   Floor monitoring and inversion imaging results for mining failure process in working face

    图  5   X=20 m位置电阻率切片

    Figure  5.   Resistivity slice at X=20 m

    图  6   底板水害隐患顶板监测反演成像结果

    Figure  6.   Roof monitoring and inversion imaging results for floor hidden water hazards

    图  7   底板水害隐患底板监测成像结果

    Figure  7.   Floor monitoring and imaging results for floor hidden water hazards

    图  8   底板水害隐患纯异常响应提取结果

    Figure  8.   Extraction results of pure abnormal response of floor hidden water hazards

    表  1   工作面地电模型参数

    Table  1   Geo-electric model parameters of working face

    模型编号回采进
    度/m
    回采
    阶段
    充水异常破坏分区走向范
    围/m
    倾向范
    围/m
    垂向范
    围/m
    电阻率/(Ω·m)
    10回采前切眼0~60~1000~520 000
    210初次来压前垮落带离层区0~100~1000~76 000
    卸压膨胀区0~100~100−5~01 500
    采煤工作区10~160~1000~520 000
    过渡区10~160~100−5~0450
    煤壁支撑区16~400~1000~5700
    超前压缩区16~400~100−10~0350
    330初次来压后断裂带离层区0~300~1007~20600
    垮落带离层区0~300~1000~76 000
    卸压膨胀区0~300~100−10~01 500
    采煤工作区30~360~1000~520 000
    过渡区30~360~100−5~0450
    煤壁支撑区36~600~1000~5700
    超前压缩区36~600~100−10~0350
    460周期来压断裂带重新压实区0~300~1007~20300
    垮落带重新压实区0~300~1000~73 000
    底板破坏带重新压实区0~300~100−16~0750
    断裂带离层区30~600~1007~20600
    垮落带离层区30~600~1000~76 000
    卸压膨胀区30~600~100−10~01 500
    采煤工作区60~660~1000~520 000
    过渡区60~660~100−5~0450
    煤壁支撑区66~900~1000~5700
    超前压缩区66~900~100−10~0350
    560周期来压破坏分区与模型4一致
    充水异常区10~5030~70−10~−5020
    660周期来压破坏分区与模型4一致
    充水异常区40~8030~70−10~−5020
    760周期来压破坏分区与模型4一致
    充水异常区80~12030~70−10~−5020
    860周期来压破坏分区与模型4一致
    充水异常区120~16030~70−10~−5020
    下载: 导出CSV
  • [1] 张培森,朱慧聪,李复兴,等. 2008—2019年我国煤矿水害事故统计及演变趋势分析[J]. 煤矿安全,2021,52(8):194-200,207.

    ZHANG Peisen,ZHU Huicong,LI Fuxing,et al. Evolution trend and statistical analysis of coal mine water disaster accidents in China from 2008 to 2019[J]. Safety in Coal Mines,2021,52(8):194-200,207.

    [2] 王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1-27. DOI: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001

    WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1-27. DOI: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001

    [3] 董书宁,刘再斌,程建远,等. 煤炭智能开采地质保障技术及展望[J]. 煤田地质与勘探,2021,49(1):21-31. DOI: 10.3969/j.issn.1001-1986.2021.01.003

    DONG Shuning,LIU Zaibin,CHENG Jianyuan,et al. Technologies and prospect of geological guarantee for intelligent coal mining[J]. Coal Geology & Exploration,2021,49(1):21-31. DOI: 10.3969/j.issn.1001-1986.2021.01.003

    [4] 靳德武,乔伟,李鹏,等. 煤矿防治水智能化技术与装备研究现状及展望[J]. 煤炭科学技术,2019,47(3):10-17.

    JIN Dewu,QIAO Wei,LI Peng,et al. Research status and prospects on intelligent technology and equipment for mine water hazard prevention and control[J]. Coal Science and Technology,2019,47(3):10-17.

    [5] 吴泱序, 陈平, 李波. 基于3D双流网络的地下岩层破裂微震震源定位[J/OL]. 煤炭科学技术: 1-9[2022-10-03]. DOI: 10.13199/j.cnki.cst.2022-0395.

    WU Yangxu, CHEN Ping, LI Bo. Location of underground microseismic source based on 3D two-stream network[J/OL]. Coal Science and Technology: 1-9[2022-10-03]. DOI: 10.13199/j.cnki.cst.2022-0395.

    [6] 鲁晶津,王冰纯,李德山,等. 矿井电阻率法监测系统在采煤工作面水害防治中的应用[J]. 煤田地质与勘探,2022,50(1):36-44.

    LU Jingjin,WANG Bingchun,LI Deshan,et al. Application of mine-used resistivity monitoring system in working face water disaster control[J]. Coal Geology & Exploration,2022,50(1):36-44.

    [7] 孙斌杨,张平松. 基于DFOS的采场围岩变形破坏监测研究进展与展望[J]. 工程地质学报,2021,29(4):985-1001.

    SUN Binyang,ZHANG Pingsong. Research progress and prospect of surrounding rock deformation and failure monitoring in stope based on DFOS[J]. Journal of Engineering Geology,2021,29(4):985-1001.

    [8] 鲁晶津,王冰纯,颜羽. 矿井电法在煤层采动破坏和水害监测中的应用进展[J]. 煤炭科学技术,2019,47(3):18-26.

    LU Jingjin,WANG Bingchun,YAN Yu. Advances of mine electrical resistivity method applied in coal seam mining destruction and water inrush monitoring[J]. Coal Science and Technology,2019,47(3):18-26.

    [9] 于师建,程久龙,王玉和. 覆岩破坏视电阻率变化特征研究[J]. 煤炭学报,1999,24(5):457-460.

    YU Shijian,CHENG Jiulong,WANG Yuhe. The study on apparent resistivity change feature of overlying strata[J]. Journal of China Coal Society,1999,24(5):457-460.

    [10] 程久龙,于师建. 覆岩变形破坏电阻率响应特征的模拟实验研究[J]. 地球物理学报,2000,43(5):699-706. DOI: 10.3321/j.issn:0001-5733.2000.05.014

    CHENG Jiulong,YU Shijian. Simulation experiment on the response of resistivity to deformation and failure of overburden[J]. Chinese Journal of Geophysics,2000,43(5):699-706. DOI: 10.3321/j.issn:0001-5733.2000.05.014

    [11] 程久龙. 矿山采动裂隙岩体地球物理场特征研究及工程应用[J]. 中国矿业大学学报,2008,37(6):877-879.

    CHENG Jiulong. Study on geophysical field characteristics of mining-induced fracture rock mass in mine and its applications[J]. Journal of China University of Mining & Technology,2008,37(6):877-879.

    [12] 张平松,刘盛东,吴荣新,等. 采煤面覆岩变形与破坏立体电法动态测试[J]. 岩石力学与工程学报,2009,28(9):1870-1875.

    ZHANG Pingsong,LIU Shengdong,WU Rongxin,et al. Dynamic detection of overburden deformation and failure in mining workface by 3D resistivity method[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(9):1870-1875.

    [13] 张平松,胡雄武,刘盛东. 采煤面覆岩破坏动态测试模拟研究[J]. 岩石力学与工程学报,2011,30(1):78-83.

    ZHANG Pingsong,HU Xiongwu,LIU Shengdong. Study of dynamic detection simulation of overburden failure in model workface[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(1):78-83.

    [14] 张平松,胡雄武,吴荣新. 岩层变形与破坏电法测试系统研究[J]. 岩土力学,2012,33(3):952-956.

    ZHANG Pingsong,HU Xiongwu,WU Rongxin. Study of detection system of distortion and collapsing of top rock by resistivity method in working face[J]. Rock and Soil Mechanics,2012,33(3):952-956.

    [15] 王莹,梁德贤,翟培合. 采动影响下煤层覆岩电性变化规律研究[J]. 煤炭科学技术,2015,43(5):122-125,105.

    WANG Ying,LIANG Dexian,ZHAI Peihe. Study on electrical property variation law of overburden strata above seam under mining influences[J]. Coal Science and Technology,2015,43(5):122-125,105.

    [16] 吴荣新,张卫,张平松. 并行电法监测工作面“垮落带”岩层动态变化[J]. 煤炭学报,2012,37(4):571-577.

    WU Rongxin,ZHANG Wei,ZHANG Pingsong. Exploration of parallel electrical technology for the dynamic variation of caving zone strata in coal face[J]. Journal of China Coal Society,2012,37(4):571-577.

    [17] 吴荣新,吴茂林,曹建富,等. 厚松散层薄基岩坚硬顶板工作面覆岩破坏电法监测[J]. 煤炭科学技术,2020,48(1):239-245.

    WU Rongxin,WU Maolin,CAO Jianfu,et al. Electrical monitoring of overburden failure in hard roof working face with thick loose layer and thin bedrock[J]. Coal Science and Technology,2020,48(1):239-245.

    [18] 刘树才,刘鑫明,姜志海,等. 煤层底板导水裂隙演化规律的电法探测研究[J]. 岩石力学与工程学报,2009,28(2):348-356.

    LIU Shucai,LIU Xinming,JIANG Zhihai,et al. Research on electrical prediction for evaluating water conducting fracture zones in coal seam floor[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):348-356.

    [19] 张朋,王一,刘盛东,等. 工作面底板变形与破坏电阻率特征[J]. 煤田地质与勘探,2011,39(1):64-67.

    ZHANG Peng,WANG Yi,LIU Shengdong,et al. Resistivity characteristic of deformation and failure of floor in workface[J]. Coal Geology & Exploration,2011,39(1):64-67.

    [20] 孙希奎,许进鹏,杨圣伦,等. 电阻率法动态监测煤层底板破坏变形规律研究[J]. 煤炭科学技术,2013,41(1):113-115,59.

    SUN Xikui,XU Jinpeng,YANG Shenglun,et al. Study on electric resistivity method applied to dynamically monitor and measure failure deformation law of seam floor[J]. Coal Science and Technology,2013,41(1):113-115,59.

    [21] 吴基文,翟晓荣,张海潮,等. 注浆加固与含水层改造底板采动效应孔巷电阻率CT探测研究[J]. 地球物理学进展,2015,30(2):920-927. DOI: 10.6038/pg20150260

    WU Jiwen,ZHAI Xiaorong,ZHANG Haichao,et al. The electronic resistivity CT detection and research of holes and roadways on the mining effect of floors after grouting reinforcement and reconstruction of aquifers[J]. Progress in Geophysics,2015,30(2):920-927. DOI: 10.6038/pg20150260

    [22] 张平松,刘畅,欧元超,等. 准格尔煤田特厚煤层开采底板破坏特征综合测试研究[J]. 煤田地质与勘探,2021,49(1):263-269. DOI: 10.3969/j.issn.1001-1986.2021.01.029

    ZHANG Pingsong,LIU Chang,OU Yuanchao,et al. Comprehensive testing research on floor damage characteristics of mining extra-thick seam in Jungar Coalfield[J]. Coal Geology & Exploration,2021,49(1):263-269. DOI: 10.3969/j.issn.1001-1986.2021.01.029

    [23] 杨海平,刘盛东,杨彩,等. 煤层顶底板采动破坏同步动态监测电性特征分析[J]. 工程地质学报,2021,29(4):1002-1009.

    YANG Haiping,LIU Shengdong,YANG Cai,et al. Analysis of electrical characteristics of mining destruction on coal seam roof and floor with simultaneous dynamic monitoring method[J]. Journal of Engineering Geology,2021,29(4):1002-1009.

    [24]

    LU Jingjin,WU Xiaoping,KLAUS S. Algebraic multigrid method for 3D DC resistivity modeling[J]. Chinese Journal of Geophysics,2010,53(3):700-707.

    [25]

    PIDLISECKY A,HABER E,KNIGHT R. RESINVM3D:a 3D resistivity inversion package[J]. Geophysics,2007,72(2):H1-H10. DOI: 10.1190/1.2402499

    [26] 徐永圻. 采矿学[M]. 徐州: 中国矿业大学出版社, 2003.

    XU Yongqi. Mining science[M]. Xuzhou: China University of Mining and Technology Press, 2003.

图(8)  /  表(1)
计量
  • 文章访问数:  209
  • HTML全文浏览量:  57
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-14
  • 修回日期:  2022-12-30
  • 网络出版日期:  2023-01-16
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回