综采设备搬家倒面计划编制研究

石梦寒, 朱卫兵, 任海兵

石梦寒,朱卫兵,任海兵. 综采设备搬家倒面计划编制研究[J]. 工矿自动化,2022,48(11):133-138. DOI: 10.13272/j.issn.1671-251x.18025
引用本文: 石梦寒,朱卫兵,任海兵. 综采设备搬家倒面计划编制研究[J]. 工矿自动化,2022,48(11):133-138. DOI: 10.13272/j.issn.1671-251x.18025
SHI Menghan, ZHU Weibing, REN Haibing. Research on fully mechanized mining equipment removal planning during sequencing working face[J]. Journal of Mine Automation,2022,48(11):133-138. DOI: 10.13272/j.issn.1671-251x.18025
Citation: SHI Menghan, ZHU Weibing, REN Haibing. Research on fully mechanized mining equipment removal planning during sequencing working face[J]. Journal of Mine Automation,2022,48(11):133-138. DOI: 10.13272/j.issn.1671-251x.18025

综采设备搬家倒面计划编制研究

基金项目: 国家自然科学基金资助项目(52074265)。
详细信息
    作者简介:

    石梦寒(2000—),女,安徽宿州人,硕士研究生,主要从事企业管理信息化、资源与环境方面的研究工作,E-mail:1211566576@qq.com

    通讯作者:

    朱卫兵(1978—),男,江苏南通人,教授,博士,主要研究方向为岩层移动与绿色开采,E-mail:zweibing@163.com

  • 中图分类号: TD67

Research on fully mechanized mining equipment removal planning during sequencing working face

  • 摘要: 目前煤矿工作面综采设备搬家倒面计划主要依靠人工编制,工作量大,效率低,导致工期延长,且快速搬家倒面主要依赖高度机械化作业,少有对不同矿井之间或同一矿井不同工作面之间综采设备搬家倒面计划优化问题的研究。针对该问题,通过调研神东集团综采工作面近3 a开采情况,定义了工作面、设备、人员、时间等表征综采设备搬家倒面工作的关键参数,以最小化最大完工时间为目标函数,建立了综采设备搬家倒面计划编制数学模型;设计了求解该数学模型的遗传算法,采用考虑工作面、综采设备、施工队伍选择的三段编码方式,构建适应度函数,对表征工作面、综采设备、施工队伍的染色体进行选择、交叉、变异操作,并考虑最晚开采时间对染色体的合法性进行判断和调整,通过设置迭代次数终止算法搜索过程并输出结果;基于综采设备搬家倒面计划编制遗传算法,开发了基于B/S架构的综采设备搬家倒面计划管理系统,实现了综采工作面搬家倒面工作基础信息管理、综采设备搬家倒面计划编制等功能。实例表明:应用遗传算法可将神东集团2021年度11个综采工作面设备搬家倒面计划工期由103 d缩短至91 d,有效提高了综采设备搬家倒面计划编制效率及工程效率。
    Abstract: The current fully mechanized mining equipment removal plan during sequencing working face mainly depends on manual preparation. The large workload and low efficiency lead to the extension of the construction period. The quick removal mainly depends on a high degree of mechanized operations. There is little research on optimizing the fully mechanized mining equipment removal plan during sequencing working face between different mines or different working faces in the same mine. In order to solve this problem, by investigating the mining conditions of Shendong Group's fully mechanized mining equipment in recent three years, the key parameters such as working face, equipment, personnel, and time are defined, which characterize the fully mechanized mining equipment removal during sequencing working face. Taking minimizing the maximum completion time as the objective function, a mathematical model for the fully mechanized mining equipment removal planning during sequencing working face is established. A genetic algorithm is designed to solve the mathematical model. The three-segment coding method considering the selection of working face, fully mechanized mining equipment and construction team is adopted, and the fitness function is built. The chromosomes of working face, fully mechanized mining equipment and construction team are selected, crossed and mutated. Considering the latest mining time, the legitimacy of chromosomes is judged and adjusted. By setting the number of iterations, search process of the algorithm is terminated and outputs the results. Based on the genetic algorithm for the fully mechanized mining equipment removal planning during sequencing working face, a management system of the fully mechanized mining equipment removal plan during sequencing working face based on B/S architecture is developed. It has realized the functions of basic information management of fully mechanized working face removal during sequence working face, and fully mechanized mining equipment removal planning during sequencing working face. The example shows that the application of genetic algorithm can shorten the construction period of fully mechanized mining equipment removal of 11 fully mechanized working faces in Shendong Group in 2021 from 103 days to 91 days. The method effectively improves the fully mechanized mining equipment removal planning efficiency and engineering efficiency.
  • 图  1   优化前的综采设备搬家倒面计划

    Figure  1.   Fully mechanized mining equipment removel plan during sequencing working face before optimization

    图  2   优化后的综采设备搬家倒面计划

    Figure  2.   Fully mechanized mining equipment removel plan during sequencing working face after optimization

    图  3   综采设备搬家倒面计划管理系统E−R关系

    Figure  3.   E-R relationship of management system of fully mechanized mining equipment removel plan during sequencing working face

    图  4   工作面管理页面

    Figure  4.   Working face management interface

    图  5   工作面设备选型页面

    Figure  5.   Equipment selection interface of working face

    表  1   综采设备搬家倒面计划编制问题约束条件

    Table  1   Constraint conditions of fully mechanized mining equipment removal planning during sequencing working face

    公式公式说明
    $\displaystyle\sum\limits_{k = 1}^m { {a_{ik} } }= 1$ 1个工作面有多套设备可供选择,但只能选择其中的1套设备进行安装、回撤和开采
    $\displaystyle\sum\limits_{l = 1}^q { {h_{il} } } = 1$ 1个工作面有多支施工队伍可供选择,但只能选择其中的1支施工队伍进行安装、回撤和开采
    ${s_j} \geqslant \displaystyle\sum\limits_{k = 1}^m { {a_{ik} } } {a_{jk} }{b_{ijk} }{e_i} + {T_{ij} }$ 任意时刻,对于每套综采设备,只能服务于1个工作面
    ${s_j} \geqslant \displaystyle\sum\limits_{l = 1}^q { {h_{il} } } {h_{jl} }{L_{ijl} }{e_i} + { {{T} }_{ij} }$ 任意时刻,对于每支施工队伍,只能服务于1个工作面
    ${e_i} = {s_i} + \displaystyle\sum\limits_{ {{k} } = {\text{1} } }^{{m} } { {a_{ik} }{t_{ik} } }$ 综采设备的回撤结束时间等于设备开始安装时间加上工作面占用该设备的时间
    ${s}_{i}\geqslant 0,{{e} }_{i}\geqslant 0$ 综采设备开始安装时间和回撤结束时间必须非负
    $ {C_{\max }} \geqslant {e_i} $ 工作面综采设备回撤结束时间不大于最大完工时间
    下载: 导出CSV

    表  2   算法配置表

    Table  2   Algorithm configuration table

    名称类型描述
    config_idint算法配置编号
    config_namevarchar配置名称
    cross_provarchar交叉概率
    mutation_provarchar变异概率
    pop_numint种群大小
    iterate_numint迭代次数
    remarkvarchar备注
    下载: 导出CSV

    表  3   搬家倒面计划表

    Table  3   Fully mechanized mining equipment removal plan table during sequencing working face

    名称类型描述
    plan_idint计划编号
    create_timedatetime计划创建时间
    statusvarchar计划执行状态
    start_timedatetime开始时间
    end_timedatetime结束时间
    work_timevarchar工期
    remarkvarchar备注
    下载: 导出CSV
  • [1] 王梁,李杰. 新型智能变频牵引绞车研制与应用[J]. 煤炭科学技术,2022,50(4):277-284. DOI: 10.13199/j.cnki.cst.2020-0605

    WANG Liang,LI Jie. Development and application of new intelligent variable frequency traction winch[J]. Coal Science and Technology,2022,50(4):277-284. DOI: 10.13199/j.cnki.cst.2020-0605

    [2] 罗文,杨俊彩. 神东矿区快速掘进装备与技术研究现状及展望[J]. 工矿自动化,2021,47(增刊2):32-38.

    LUO Wen,YANG Juncai. Research status and prospects on rapid tunneling equipment and technology in Shendong Mining Area[J]. Industry and Mine Automation,2021,47(S2):32-38.

    [3] 韩国华. 网络计划技术在煤矿综采设备搬家倒面中的应用研究[J]. 煤炭工程,2010(6):49-51. DOI: 10.3969/j.issn.1671-0959.2010.06.021

    HAN Guohua. Research on the application of network planning technology in moving inverted surface of fully mechanized mining equipment in coal mine[J]. Coal Engineering,2010(6):49-51. DOI: 10.3969/j.issn.1671-0959.2010.06.021

    [4] 徐明,张剑铭,陈松航,等. 柔性作业车间调度问题的多目标优化算法[J]. 计算机与现代化,2021(12):1-6. DOI: 10.3969/j.issn.1006-2475.2021.12.001

    XU Ming,ZHANG Jianming,CHEN Songhang,et al. Multi-objective optimization algorithm for flexible job shop scheduling problem[J]. Computer and Modernization,2021(12):1-6. DOI: 10.3969/j.issn.1006-2475.2021.12.001

    [5] 蔡敏,王艳,纪志成. 混合粒子群优化算法求解模糊柔性作业车间调度问题[J]. 南京理工大学学报,2021,45(3):352-360. DOI: 10.14177/j.cnki.32-1397n.2021.45.03.014

    CAI Min,WANG Yan,JI Zhicheng. Hybrid particle swarm optimization for solving fuzzy flexible job-shop scheduling problem[J]. Journal of Nanjing University of Science and Technology,2021,45(3):352-360. DOI: 10.14177/j.cnki.32-1397n.2021.45.03.014

    [6] 田云娜,田园,刘雪,等. 一种改进的求解柔性作业车间调度问题的灰狼算法[J]. 计算机与现代化,2022(8):78-85. DOI: 10.3969/j.issn.1006-2475.2022.08.013

    TIAN Yunna,TIAN Yuan,LIU Xue,et al. An improved grey wolf algorithm for flexible job shop scheduling problem[J]. Computer and Modernization,2022(8):78-85. DOI: 10.3969/j.issn.1006-2475.2022.08.013

    [7] 马铭阳. 改进人工蜂群算法及其在柔性作业车间调度的应用研究[D]. 南京: 南京信息工程大学, 2021.

    MA Mingyang. Research on improved artificial bee colony algorithm and the application in flexible job-shop scheduling[D]. Nanjing: Nanjing University of Information Science and Technology, 2021.

    [8] 杨帆,方成刚,洪荣晶,等. 改进遗传算法在车间调度问题中的应用[J]. 南京工业大学学报(自然科学版),2021,43(4):480-485. DOI: 10.3969/j.issn.1671-7627.2021.04.011

    YANG Fan,FANG Chenggang,HONG Rongjing,et al. Application of improved genetic algorithm in job-shop scheduling problem[J]. Journal of Nanjing University of Technology(Natural Science Edition),2021,43(4):480-485. DOI: 10.3969/j.issn.1671-7627.2021.04.011

    [9] 阳光灿,熊禾根. 改进遗传算法求解柔性作业车间调度问题[J]. 计算机仿真,2022,39(2):221-225,292. DOI: 10.3969/j.issn.1006-9348.2022.02.042

    YANG Guangcan,XIONG Hegen. Improved genetic algorithm for flexible job shop scheduling problem[J]. Computer Simulation,2022,39(2):221-225,292. DOI: 10.3969/j.issn.1006-9348.2022.02.042

    [10] 张立果. 基于改进遗传算法的柔性作业车间调度优化研究[D]. 南京: 南京航空航天大学, 2020.

    ZHANG Liguo. Research on flexible job-shop scheduling optimization based on improved genetic algorithm[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020.

    [11] 陈宇鸣. 基于SINS/UWB的刮板输送机高可靠性直线度检测技术研究[D]. 徐州: 中国矿业大学, 2021.

    CHEN Yuming. Research on high reliability straightness measurement technology of scraper conveyor based on SINS/UWB[D]. Xuzhou: China University of Mining and Technology, 2021.

    [12] 孙峰,陈璐,王朝阳,等. 综采面安装与回撤通道围岩控制技术研究[J]. 煤炭技术,2020,39(3):60-64. DOI: 10.13301/j.cnki.ct.2020.03.018

    SUN Feng,CHEN Lu,WANG Chaoyang,et al. Study on surrounding rock control technology of installation and withdrawal channel in fully mechanized coal face[J]. Coal Technology,2020,39(3):60-64. DOI: 10.13301/j.cnki.ct.2020.03.018

    [13] 石梦寒. 亿吨级矿区矿井群综采设备搬家倒面计划优化研究[D]. 徐州: 中国矿业大学, 2022.

    SHI Menghan. Research on the optimization of moving inverted plan of fully mechanized mining equipment in 100 million ton mining area[D]. Xuzhou: China University of Mining and Technology, 2022.

  • 期刊类型引用(0)

    其他类型引用(3)

图(5)  /  表(3)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  42
  • PDF下载量:  24
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-08-30
  • 修回日期:  2022-11-13
  • 网络出版日期:  2022-11-16
  • 刊出日期:  2022-11-24

目录

    /

    返回文章
    返回