Abstract:
The current fully mechanized mining equipment removal plan during sequencing working face mainly depends on manual preparation. The large workload and low efficiency lead to the extension of the construction period. The quick removal mainly depends on a high degree of mechanized operations. There is little research on optimizing the fully mechanized mining equipment removal plan during sequencing working face between different mines or different working faces in the same mine. In order to solve this problem, by investigating the mining conditions of Shendong Group's fully mechanized mining equipment in recent three years, the key parameters such as working face, equipment, personnel, and time are defined, which characterize the fully mechanized mining equipment removal during sequencing working face. Taking minimizing the maximum completion time as the objective function, a mathematical model for the fully mechanized mining equipment removal planning during sequencing working face is established. A genetic algorithm is designed to solve the mathematical model. The three-segment coding method considering the selection of working face, fully mechanized mining equipment and construction team is adopted, and the fitness function is built. The chromosomes of working face, fully mechanized mining equipment and construction team are selected, crossed and mutated. Considering the latest mining time, the legitimacy of chromosomes is judged and adjusted. By setting the number of iterations, search process of the algorithm is terminated and outputs the results. Based on the genetic algorithm for the fully mechanized mining equipment removal planning during sequencing working face, a management system of the fully mechanized mining equipment removal plan during sequencing working face based on B/S architecture is developed. It has realized the functions of basic information management of fully mechanized working face removal during sequence working face, and fully mechanized mining equipment removal planning during sequencing working face. The example shows that the application of genetic algorithm can shorten the construction period of fully mechanized mining equipment removal of 11 fully mechanized working faces in Shendong Group in 2021 from 103 days to 91 days. The method effectively improves the fully mechanized mining equipment removal planning efficiency and engineering efficiency.