Manual regulation and control decision model of middle hydraulic support cluster automation in the intelligent working face
-
摘要: 智采工作面在液压支架自动跟机完成后,会出现丢架、直线度不平整、支架歪斜等异常工况,需要人工调控,目前研究缺乏对智采工作面生产过程中液压支架自动化后人工调控工况的知识发现,不利于工人快速判断需人工调控的液压支架架号。针对上述问题,从判别液压支架自动化后动作不达标液压支架架号出发,提出了一种智采工作面中部液压支架集群自动化后人工调控决策模型。 首先,对工作面历史数据进行分析,得出液压支架自动跟机完成后3个特征值(即自动跟机拉架距离、自动跟机前后的推移油缸行程变化量、采煤机位置支架号与被判断支架号的绝对差值)可作为判别液压支架自动跟机后是否进行人工调控的重要特征。根据上述结论,给出了液压支架集群自动化后人工调控决策模型结构,其中数据采集模块用于提供原始数据;数据预处理模块对原始数据进行异常值处理、筛选、排序和相关性分析等数据准备工作;特征工程模块对上述3个特征值进行计算及标准化处理,为分类模型提供样本集;分类模型对样本集进行划分后,利用ID3决策树进行分类,最后输出正常工况下的液压支架架号与需人工调控的液压支架架号。模型评估结果表明,与传统K最近邻(KNN)、支持向量机(SVM)、逻辑回归(LR)等分类算法相比,基于ID3决策树的智采工作面中部液压支架工况分类模型的训练集准确率为92.27%,测试集准确率为93.75%,能够较好地判别自动化后人工调控液压支架架号。Abstract: The intelligent working face has abnormal working conditions such as lost support, uneven straightness, and support skew after the automatic following of hydraulic support. Therefore, manual regulation and control are needed. At present, the research lacks the knowledge discovery of manual regulation and control working conditions after the hydraulic support automation in the production process of the intelligent working face. This is not conducive for workers to quickly judge the number of hydraulic support requiring manual regulation and control. In order to solve the above problems, based on the identification of the number of hydraulic support that is not up to the standard after the hydraulic support automation, a manual regulation and control decision model of middle hydraulic support cluster automation in the intelligent working face is put forward. Firstly, the historical data of the working face is analyzed. It is concluded that after the automatic following of the hydraulic support is finished, three characteristic values can be used as important characteristics for judging whether the hydraulic support carries out manual regulation and control after the automatic following of the hydraulic support. The characteristic values include the distance of the automatic following of the hydraulic support, the stroke variation of the pushing oil cylinder before and after the automatic following of the hydraulic support, and the absolute difference between the number of the hydraulic support at the position of the shearer and the number of the judged hydraulic support. According to the above conclusion, the structure of the manual control decision model after the hydraulic support cluster automation is proposed. The data acquisition module is used for providing the original data. The data preprocessing module prepares the original data by outlier processing, filtering, sorting and correlation analysis. The characteristic engineering module calculates and standardizes the above three characteristic values to provide a sample set for the classification model. After the classification model divides the sample set, the ID3 decision tree is used for classification. Finally, the number of hydraulic supports needing normal working conditions and the number of hydraulic supports nedeing manual control are output. The results of the model evaluation show that, compared with the traditional K-nearest neighbor (KNN), support vector machine (SVM), logical regression (LR) classification algorithms, the training set accuracy of the ID3 decision tree based classification model for the working conditions of hydraulic supports in the middle of the intelligent working face is 92.27%. The test set accuracy is 93.75%. The model can better distinguish the manual control hydraulic support number after automation.
-
-
表 1 样本数量统计
Table 1 Quantity statistics of samples
样本 样本数量 占比/% 正常工况样本 4 986 84.73 自动化后人工调控工况样本 899 15.27 表 2 模型准确率统计
Table 2 Model accuracy statistics
% 算法 训练集准确率 测试集准确率 决策树 92.27 93.75 KNN 91.51 91.82 SVM 93.84 90.82 LR 89.00 90.86 -
[1] 王国法,范京道,徐亚军,等. 煤炭智能化开采关键技术创新进展与展望[J]. 工矿自动化,2018,44(2):5-12. WANG Guofa,FAN Jingdao,XU Yajun,et al. Innovation progress and prospect on key technologies of intelligent coal mining[J]. Industry and Mine Automation,2018,44(2):5-12.
[2] 王国法,庞义辉,任怀伟. 煤矿智能化开采模式与技术路径[J]. 采矿与岩层控制工程学报,2020,2(1):5-19. WANG Guofa,PANG Yihui,REN Huaiwei. Intelligent coal mining pattern and technological path[J]. Journal of Mining and Strata Control Engineering,2020,2(1):5-19.
[3] 王国法,刘峰,庞义辉,等. 煤矿智能化−煤炭工业高质量发展的核心技术支撑[J]. 煤炭学报,2019,44(2):349-357. WANG Guofa,LIU Feng,PANG Yihui,et al. Coal mine intellectualization:the core technology of high quality development[J]. Journal of China Coal Society,2019,44(2):349-357.
[4] 王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1-27. WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1-27.
[5] 葛世荣,郝尚清,张世洪,等. 我国智能化采煤技术现状及待突破关键技术[J]. 煤炭科学技术,2020,48(7):28-46. GE Shirong,HAO Shangqing,ZHANG Shihong,et al. Status of intelligent coal mining technology and potential key technologies in China[J]. Coal Science and Technology,2020,48(7):28-46.
[6] 王国法,徐亚军,张金虎,等. 煤矿智能化开采新进展[J]. 煤炭科学技术,2021,49(1):1-10. WANG Guofa,XU Yajun,ZHANG Jinhu,et al. New development of intelligent mining in coal mines[J]. Coal Science and Technology,2021,49(1):1-10.
[7] 任怀伟,王国法,赵国瑞,等. 智慧煤矿信息逻辑模型及开采系统决策控制方法[J]. 煤炭学报,2019,44(9):2923-2935. REN Huaiwei,WANG Guofa,ZHAO Guorui,et al. Smart coal mine logic model and decision control method of mining system[J]. Journal of China Coal Society,2019,44(9):2923-2935.
[8] 王国法,任怀伟,赵国瑞,等. 煤矿智能化十大“痛点”解析及对策[J]. 工矿自动化,2021,47(6):1-11. WANG Guofa,REN Huaiwei,ZHAO Guorui,et al. Analysis and countermeasures of ten'pain points' of intelligent coal mine[J]. Industry and Mine Automation,2021,47(6):1-11.
[9] 张帅,任怀伟,韩安,等. 复杂条件工作面智能化开采关键技术及发展趋势[J]. 工矿自动化,2022,48(3):16-25. DOI: 10.13272/j.issn.1671-251x.2021090041 ZHANG Shuai,REN Huaiwei,HAN An,et al. Key technology and development trend of intelligent mining in complex condition working face[J]. Journal of Mine Automation,2022,48(3):16-25. DOI: 10.13272/j.issn.1671-251x.2021090041
[10] 路正雄,郭卫,张帆,等. 基于数据驱动的综采装备协同控制系统架构及关键技术[J]. 煤炭科学技术,2020,48(7):195-205. LU Zhengxiong,GUO Wei,ZHANG Fan,et al. Collaborative control system architecture and key technologies of fully-mechanized mining equipment based on data drive[J]. Coal Science and Technology,2020,48(7):195-205.
[11] ZHANG Lin,WANG Zhongbin,TAN Chao,et al. A fruit fly-optimized kalman filter algorithm for pushing distance estimation of a hydraulic powered roof support through tuning covariance[J]. Applied Sciences,2016,6(10):299. DOI: 10.3390/app6100299
[12] FAN Qigao,LI Wei,WANG Yuqiao,et al. Control strategy for an intelligent shearer height adjusting system[J]. Mining Science & Technology(China),2010,20(6):908-912.
[13] 牛剑峰. 受汽车无人驾驶启发的液压支架智能协同控制[J]. 工矿自动化,2020,46(5):54-56,75. NIU Jianfeng. Intelligent cooperative control of hydraulic support inspired by driveless car[J]. Industry and Mine Automation,2020,46(5):54-56,75.
[14] 王统诚. 液压支架自动化跟机系统研究[D]. 青岛: 山东科技大学, 2018. WANG Tongcheng. Research on hudraulic support automatic system[D]. Qingdao: Shandong University of Science and Technology, 2018.
[15] 刘清,韩秀琪,徐兰欣,等. 综采工作面采煤机和液压支架协同控制技术[J]. 工矿自动化,2020,46(5):43-48. LIU Qing,HAN Xiuqi,XU Lanxin,et al. Cooperative control technology of shear and hydraulic support on fully-mechanized coal mining face[J]. Industry and Mine Automation,2020,46(5):43-48.
[16] 付翔,王然风,赵阳升. 液压支架群组跟机推进行为的智能决策模型[J]. 煤炭学报,2020,45(6):2065-2077. FU Xiang,WANG Ranfeng,ZHAO Yangsheng. Intelligent decision-making model on the of hydraulic supports group advancing behavior to follow shearer[J]. Journal of China Coal Society,2020,45(6):2065-2077.
-
期刊类型引用(22)
1. 王浩. 选煤厂自动加介质系统的设计. 机械制造. 2024(02): 53-55 . 百度学术
2. 刘新辉,袁雪,吕鹏辉,雷伟刚,薛振磊,卜祥宁,沙杰. 选煤厂重介质分选工艺智能化改造及应用. 煤炭加工与综合利用. 2024(03): 10-13+17 . 百度学术
3. 申杰. 选煤厂自动化重介质分选技术的应用分析. 矿业装备. 2024(05): 198-200 . 百度学术
4. 倪云峰,魏富太,郭苹. 重介质分选过程中悬浮液密度和黏度控制算法研究. 煤炭技术. 2024(08): 296-299 . 百度学术
5. 张文军. 选煤厂生产线调度最优决策专家系统设计. 自动化仪表. 2024(07): 75-79 . 百度学术
6. 张军,蔚文朋,张硕,姜坤坤,王杰,李少宁,董良,代伟. 基于云熵优化的云模型-组合赋权煤炭分选工艺综合评价方法. 洁净煤技术. 2024(S2): 508-514 . 百度学术
7. 王美君,谭章禄,吕晗冰,桂谕典. 选煤厂智能化建设技术架构与技术策略研究. 矿业科学学报. 2024(06): 1017-1026 . 百度学术
8. 郎艳波. 重介质选煤装备的智能化设计改造及应用. 机械研究与应用. 2023(01): 136-139+143 . 百度学术
9. 班海俊,武源,张锦龙,刘诗宇,常艇. 李家壕选煤厂智能加介系统研究. 煤炭工程. 2023(04): 168-172 . 百度学术
10. 柴进,张海斌,高平小,王湛,乔宏. 基于特征融合的选煤厂振动筛故障诊断方法. 煤炭工程. 2023(06): 158-163 . 百度学术
11. 代伟,王昱栋,彭勇. 重介质选煤过程数学模型的研究现状与展望. 控制工程. 2023(10): 1759-1766 . 百度学术
12. 吴毅刚,朱陈雨. 重介质悬浮液密度的压差式测量方法研究现状及趋势. 煤炭加工与综合利用. 2023(10): 20-24+28 . 百度学术
13. 司海波. 重介质洗煤自动控制系统设计研究. 机械管理开发. 2022(08): 257-259 . 百度学术
14. 代伟,王昱栋,董良,赵跃民. 煤炭智能重介分选技术进展与探索. 工矿自动化. 2022(11): 20-26+44 . 本站查看
15. 周增宏. 选煤厂制介及加介系统设计与应用. 陕西煤炭. 2021(01): 162-166+173 . 百度学术
16. 寇金成. 选煤厂重介质悬浮液密度控制方案优化. 山西焦煤科技. 2021(03): 41-43 . 百度学术
17. 王庆飞,齐健,王洪兵. 乌东选煤厂重介质浅槽分选系统的分选试验研究. 能源与环保. 2021(09): 260-265 . 百度学术
18. 汤优优,喻连香,陈雄. 重介质选矿技术在处理有色金属矿和非金属矿的研究现状及展望. 矿产综合利用. 2021(04): 118-124 . 百度学术
19. 王光辉,彭勇,代伟,董良,马小平. 基于灵敏度分析与增强捕食-食饵优化的重介质选煤过程动态模型. 煤炭学报. 2021(09): 2813-2823 . 百度学术
20. 邢欢,周增宏. 一种射流喷射式自动加介系统. 洁净煤技术. 2021(S1): 97-101 . 百度学术
21. 李志军,韩伟,王光辉. 基于DASCN的重介质浅槽分选灰分预测. 煤炭工程. 2021(S1): 122-126 . 百度学术
22. 钱丽霞. 选煤厂智能介质添加系统研究. 内蒙古煤炭经济. 2021(21): 55-57 . 百度学术
其他类型引用(7)