综采工作面煤层三维模型动态修正方法研究

Study on dynamic modification method of 3D model of coal seam in fully mechanized working face

  • 摘要: 综采工作面的高精度煤层地理信息是实现智能无人开采的关键,但现阶段所构建的煤层三维模型垂向精度较低,无法满足智能开采的实际需求。针对该问题,提出了一种综采工作面煤层三维模型动态修正方法。将得到的初始煤层三维模型静态数据及开采过程中采煤机截割产生的动态数据融合,基于长短期记忆网络(LSTM)预测算法及其改进算法(基于空间卷积长短期记忆网络(Conv LSTM)、编码−解码长短期记忆网络(Encoder-Decoder LSTM)的预测算法),根据上一回采阶段的煤层数据,动态预测下一阶段未开采区的煤层底板曲面和煤层厚度。采用双层循环嵌套的网格搜索方法对上述3种预测算法进行参数调优,获取未开采区煤层底板曲面和煤层厚度的高精度垂向分布数据,作为煤层三维模型修正值,动态修正下一阶段未开采区的煤层三维模型;随着工作面不断开采,利用新获取的修正数据持续动态修正并更新初始煤层三维模型,从而提升初始煤层三维模型精度,使动态修正后的煤层三维模型能更准确地反映综采工作面实际煤层分布。以山西吕梁市某煤矿18201工作面煤层三维模型为例,采用提出的动态修正方法对该模型进行修正,在工作面推进方向16~23.2 m范围内,动态修正后的煤层底板平均误差为0.068 5 m,煤层顶板平均误差为0.076 m,相较于修正前的底板平均误差0.20 m、煤层厚度垂向平均误差0.40 m,动态修正后的煤层三维模型精度大大提升,证实了该修正方法的有效性。

     

    Abstract: The high-precision coal seam geographic information of fully mechanized working face is the key to realizing intelligent unmanned mining. However, the vertical precision of 3D model of coal seam constructed at this stage is low. The model cannot meet the actual needs of intelligent mining. In order to solve this problem, a dynamic modification method of 3D model of coal seam in fully mechanized working face is proposed. The static data of the initial coal seam 3D model and the dynamic data generated by the shearer cutting in the mining process are fused. The method is based on the prediction algorithms of long-short term memory (LSTM) network and its improved algorithm. The improved algorithms are based on the convolutional long-short term memory network (Conv LSTM) and encoder-decoder long-short term memory network (Encoder-Decoder LSTM). The coal seam floor curved surface and the coal seam thickness of the unmined area in the next stage are dynamically predicted according to the coal seam data of the previous mining stage. The parameters of the above three prediction algorithms are optimized by using the grid search method of double-layer loop nesting. The obtained high-precision vertical distribution data of the coal seam floor curved surface and the coal seam thickness of the unexploited area are taken as the coal seam 3D model correction value. The correction value is used to dynamically correct the coal seam 3D model of the unexploited area in the next stage. With the continuous mining of the working face, the newly obtained correction data is used to continuously and dynamically correct and update the initial coal seam 3D model, so as to improve the precision of the initial coal seam 3D model. Therefore, the dynamic modified coal seam 3D model can reflect the actual coal seam distribution of fully mechanized working face more accurately. Taking the coal seam 3D model of 18201 working face of a coal mine in Lvliang, Shanxi Province as an example, the proposed dynamic correction method is used to correct the coal seam 3D model. Within the range of 16-23.2 m in the advancing direction of the working face, the average error of the coal seam floor after the dynamic correction is 0.068 5 m. The average error of the coal seam roof is 0.076 m. Compared with the average floor error of 0.20 m and vertical average error of 0.40 m of the coal seam thickness before correction, the precision of the coal seam 3D model after dynamic correction is greatly improved. The results confirm the effectiveness of the correction method.

     

/

返回文章
返回