基于RCMDE和KFCM的煤矿电网故障选线方法

韩国国, 史小军, 王晖, 程卫健, 穆艳祥

韩国国,史小军,王晖,等. 基于RCMDE和KFCM的煤矿电网故障选线方法[J]. 工矿自动化,2022,48(8):92-99. DOI: 10.13272/j.issn.1671-251x.17911
引用本文: 韩国国,史小军,王晖,等. 基于RCMDE和KFCM的煤矿电网故障选线方法[J]. 工矿自动化,2022,48(8):92-99. DOI: 10.13272/j.issn.1671-251x.17911
HAN Guoguo, SHI Xiaojun, WANG Hui, et al. Fault line selection method for coal mine power grid based on RCMDE and KFCM[J]. Journal of Mine Automation,2022,48(8):92-99. DOI: 10.13272/j.issn.1671-251x.17911
Citation: HAN Guoguo, SHI Xiaojun, WANG Hui, et al. Fault line selection method for coal mine power grid based on RCMDE and KFCM[J]. Journal of Mine Automation,2022,48(8):92-99. DOI: 10.13272/j.issn.1671-251x.17911

基于RCMDE和KFCM的煤矿电网故障选线方法

基金项目: 天地(常州)自动化股份有限公司研发项目(2020GY108)。
详细信息
    作者简介:

    韩国国(1968— ),男,山西晋城人,工程师,现从事矿山机电工作,E-mail:737491540@qq.com

    通讯作者:

    程卫健(1994— ),男,浙江湖州人,硕士,主要研究方向为煤矿供配电及其自动化,E-mail:cwj8615@163.com

  • 中图分类号: TD611

Fault line selection method for coal mine power grid based on RCMDE and KFCM

  • 摘要: 针对普遍采用谐振接地系统的煤矿电网发生单相接地故障时难以准确选线的问题,提出一种基于精细复合多尺度散布熵( RCMDE)和核模糊C均值聚类( KFCM)的煤矿电网故障选线方法。以幅值、极性和波形相似度作为选线特征量具有以下局限性:基于幅值和极性差异的选线方法适用性有限;若线路中的零序电流互感器极性接反,基于极性的方法直接失效;采样不同步时,基于波形相似度的选线方法难以得到正确结果。为克服上述局限性,引入RCMDE来度量各线路暂态零序电流信号的复杂程度和不规则度,以RCMDE作为选线特征量。采用KFCM算法对RCMDE进行聚类分析,以实现故障线路自动识别,并通过判断轮廓系数是否超过阈值来区分母线故障和馈线故障。最后,通过聚类得到的隶属度矩阵判断馈线故障点所在线路。仿真结果表明:① 故障点所在的故障线路对应的RCMDE曲线与非故障线路间具有较大差异,可分为2类。RCMDE可作为筛选故障线路的特征指标。② 发生母线故障时聚类结果中存在平均轮廓系数小于阈值的分簇,而发生馈线故障时聚类结果各分簇的轮廓系数均大于阈值,在各类故障场景下,基于RCMDE和KFCM的煤矿电网故障选线方法均能实现正确选线,说明其准确性不受故障线路、故障位置、故障合闸角及接地电阻等因素的影响。③ 在噪声干扰情况下,基于RCMDE和KFCM的煤矿电网故障选线方法在小电阻接地或高阻接地情况下均能实现正确选线,具有较强的抗干扰能力。④ 在采样不同步及故障线路零序电流互感器极性反接等情况下,基于RCMDE和KFCM的煤矿电网故障选线方法仍可实现正确选线,选线结果具有较高的鲁棒性。
    Abstract: It is difficult to accurately select the fault line when the single-phase ground fault occurs in the coal mine power grid with the widely used resonant grounding system. In order to solve the above problem, a fault line selection method of the coal mine power grid based on the refined composite multiscale dispersion entropy (RCMDE) and the kernel fuzzy C-means clustering (KFCM) is proposed. The limitations of using amplitude, polarity and waveform similarity as line selection characteristic quantities: the applicability of the line selection method based on amplitude and polarity difference is limited. If the polarity of the zero sequence current transformer in the line is reversed, the method based on polarity will directly fail. When the sampling is not synchronized, the line selection method based on waveform similarity is difficult to obtain correct results. In order to overcome the above limitations, RCMDE is introduced to measure the complexity and irregularity of the transient zero sequence current signal of each line. RCMDE is used as the characteristic quantity of line selection. The KFCM algorithm is used to cluster the RCMDE to realize the automatic identification of fault lines. The bus fault and feeder fault are distinguished by judging whether the contour coefficient exceeds the threshold value. Finally, the feeder line with the fault point is judged through the membership degree matrix obtained by clustering. The simulation results show the following points. ① The RCMDE curve of the fault line is different from that of the non-fault line, and the curves can be divided into two types. RCMDE can be used as the fault characteristic index of fault line. ② When the bus fault occurs, there are clusters with an average contour coefficient less than the threshold value in the clustering results. However, when feeder fault occurs, the contour coefficients of the clustering results are all greater than the threshold value. Under various fault scenarios, the coal mine power grid fault line selection method based on RCMDE and KFCM can realize correct line selection. The results show that its accuracy is not affected by factors such as fault line, fault location, fault closing angle and grounding resistance. ③ Under the conditions of noise disturbance, the fault line selection method based on RCMDE and KFCM can realize correct line selection in the case of low resistance grounding or high resistance grounding. And the method has a strong anti-interference capability. ④ Under the conditions of asynchronous sampling and reverse polarity of zero-sequence current transformer in the fault line, the method based on RCMDE and KFCM can still realize correct line selection. And the line selection result has high robustness.
  • 图  1   基于RCMDE和KFCM的故障选线流程

    Figure  1.   Fault line selection process based on RCMDE and KFCM

    图  2   煤矿电网单相接地故障仿真模型

    Figure  2.   Simulation model of single phase grounding fault in coal mine power grid

    图  3   RCMDE计算结果

    Figure  3.   Calculation results of RCMDE

    图  4   RCMDE归一化值

    Figure  4.   Normalized value of RCMDE

    表  1   电缆线路参数

    Table  1   Parameter of cable line

    相序单位长度电阻/ (Ω·km−1)单位长度电感/ (mH·km−1)单位长度电容/ (μF·km−1)
    正序0.2700.2550.339
    零序2.7001.0190.280
    下载: 导出CSV

    表  2   所提方法在各类故障场景下的选线结果

    Table  2   Line selection results of the proposed method in various fault scenarios

    故障线路故障位置/ kmα0/ (°)Rf / Ω隶属度矩阵U各簇平均轮廓系数选线结果
    线路1 0.2 0 0.001 $\left[ {\begin{array}{*{20}{l}} {\bf {{{1}}{{.000\;0}}} }&{{{0}}{{.003\;0}}}&{{{0}}{{.002\;4}}}&{{{0}}{{.000\;9}}} \\[2.9pt] {{{0}}{{.000\;0}}}&{\bf {{{0}}{{.997\;0}}} }&{\bf {{{0}}{{.997\;6}}} }&{\bf {{{0}}{{.999\;1}}} } \end{array}} \right]$ $ \left[ {\begin{array}{*{20}{c}} {{1}} \\[2.9pt] {{{0}}{{.994\;7}}} \end{array}} \right] $ 线路1
    0.3 60 50 $\left[ {\begin{array}{*{20}{l}} {{{0}}{{.000\;0}}}&{\bf {{{0}}{{.998\;3}}} }&{\bf {{{0}}{{.996\;9}}} }&{\bf {{{0}}{{.999\;1}}} } \\[2.9pt] {\bf {{{1}}{{.000\;0}}} }&{{{0}}{{.001\;7}}}&{{{0}}{{.003\;1}}}&{{{0}}{{.000\;9}}} \end{array}} \right]$ $ \left[ {\begin{array}{*{20}{c}} {{{0}}{{.996\;0}}} \\[2.9pt] {{1}} \end{array}} \right] $ 线路1
    0.4 90 5 000 $\left[ {\begin{array}{*{20}{l}} {{{0}}{{.000\;0}}}&{\bf {{{0}}{{.999\;4}}} }&{\bf {{{0}}{{.999\;7}}} }&{\bf {{{0}}{{.999\;8}}} } \\[2.9pt] {\bf {{{1}}{{.000\;0}}} }&{{{0}}{{.000\;6}}}&{{{0}}{{.000\;3}}}&{{{0}}{{.000\;2}}} \end{array}} \right]$ $ \left[ {\begin{array}{*{20}{c}} {{{0}}{{.999\;1}}} \\[2.9pt] {{1}} \end{array}} \right] $ 线路1
    线路3 0.3 75 50 $\left[ {\begin{array}{*{20}{l}} {{{0}}{{.016\;8}}}&{{{0}}{{.000\;7}}}&{\bf {{{0}}{{.998\;0}}} }&{{{0}}{{.001\;1}}} \\[2.9pt] {\bf {{{0}}{{.983\;2}}} }&{\bf {{{0}}{{.999\;3}}} }&{{{0}}{{.002\;0}}}&{\bf {{{0}}{{.998\;9}}} } \end{array}} \right]$ $ \left[ {\begin{array}{*{20}{c}} 1 \\[2.9pt] {{{0}}{{.986\;1}}} \end{array}} \right] $ 线路3
    0.7 15 800 $\left[ {\begin{array}{*{20}{l}} {{{0}}{{.001\;3}}}&{{{0}}{{.001\;3}}}&{\bf {{{1}}{{.000\;0}}} }&{{{0}}{{.000\;8}}} \\[2.9pt] {\bf {{{0}}{{.998\;7}}} }&{\bf {{{0}}{{.998}}\;7} }&{{{0}}{{.000\;0}}}&{\bf {{{0}}{{.999\;2}}} } \end{array}} \right]$ $ \left[ {\begin{array}{*{20}{c}} {{1}} \\[2.9pt] {{{0}}{{.999\;6}}} \end{array}} \right] $ 线路3
    1.2 45 6 000 $ \left[ {\begin{array}{*{20}{l}} {\bf {{{0}}{{.999\;3}}} }&{\bf {{{0}}{{.999\;4}}} }&{{{0}}{{.000\;0}}}&{\bf {{{0}}{{.998\;8}}} } \\[2.9pt] {{{0}}{{.000\;7}}}&{{{0}}{{.000\;6}}}&{\bf {{{1}}{{.000}} \;0} }&{{{0}}{{.001\;2}}} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {{{0}}{{.998\;2}}} \\[2.9pt] 1 \end{array}} \right] $ 线路3
    母线0 0 5 $ \left[ {\begin{array}{*{20}{l}} {\bf {{{0}}{{.936\;0}}} }&{{{0}}{{.354\;9}}}&{{{0}}{{.045\;3}}}&{{{0}}{{.041\;3}}} \\[2.9pt] {{{0}}{{.064\;0}}}&{\bf {{{0}}{{.645\;1}}} }&{\bf {{{0}}{{.954\;7}}} }&{\bf {{{0}}{{.958\;7}}} } \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {{1}} \\[2.9pt] {{{0}}{{.712\;9}}} \end{array}} \right] $ 母线0
    45 200 $\left[ {\begin{array}{*{20}{l}} {{{0}}{{.216\;4}}}&{\bf {{{0}}{{.826\;6}}} }&{\bf {{{0}}{{.707\;4}}} }&{\bf {{{0}}{{.804\;3}}} } \\[2.9pt] {\bf {{{0}}{{.783\;6}}} }&{{{0}}{{.173\;4}}}&{{{0}}{{.292\;6}}}&{{{0}}{{.195\;7}}} \end{array}} \right]$ $ \left[ {\begin{array}{*{20}{c}} {{{0}}{{.739\;3}}} \\[2.9pt] {{1}} \end{array}} \right] $ 母线0
    90 4 000 $ \left[ {\begin{array}{*{20}{l}} {\bf {{{0}}{{.932\;3}}} }&{{{0}}{{.426\;9}}}&{{{0}}{{.101\;7}}}&{{{0}}{{.016\;5}}} \\[2.9pt] {{{0}}{{.067\;7}}}&{\bf {{{0}}{{.573\;1}}} }&{\bf {{{0}}{{.898\;3}}} }&{\bf {{{0}}{{.983\;5}}} } \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {{1}} \\[2.9pt] {{{0}}{{.640\;7}}} \end{array}} \right] $ 母线0
    下载: 导出CSV

    表  3   噪声干扰下的选线结果

    Table  3   Line selection results with noise disturbance

    Rf / Ω隶属度
    矩阵U
    各簇平均
    轮廓系数
    选线
    结果
    0.001$\left[ {\begin{array}{*{20}{l}} {\bf {{{0}}{{.984\;1}}} }&{{{0}}{{.000\;2}}}&{\bf {{{0}}{{.984\;0}}} }&{\bf {{{0}}{{.997\;7}}} } \\ {{{0}}{{.015\;9}}}&{\bf {{{0}}{{.999\;8}}} }&{{{0}}{{.016\;0}}}&{{{0}}{{.002\;3}}} \end{array}} \right]$$ \left[ {\begin{array}{*{20}{c}} {{{0}}{{.966\;1}}} \\ {{1}} \end{array}} \right] $线路2
    100$\left[ {\begin{array}{*{20}{l}} {{\bf{0}}{\bf{.995\;6}}}&{{{0}}{{.022\;3}}}&{\bf {{{0}}{{.991\;5}}} }&{\bf {{{0}}{{.981\;8}}} } \\ {{{0}}{{.004\;4}}}&{\bf {{{0}}{{.977\;7}}} }&{{{0}}{{.008\;5}}}&{{{0}}{{.018\;2}}} \end{array}} \right]$$ \left[ {\begin{array}{*{20}{c}} {{{0}}{{.985\;0}}} \\ {{1}} \end{array}} \right] $线路2
    10000$\left[ {\begin{array}{*{20}{l}} {{\bf{0}}{\bf{.966\;7}}}&{{{0}}{{.001\;2}}}&{\bf {{{0}}{{.989\;3}}} }&{\bf {{{0}}{{.978\;5}}} } \\ {{{0}}{{.033}}\; {3}}&{\bf {{{0}}{{.998\;8}}} }&{{{0}}{{.010\;7}}}&{{{0}}{{.021\;5}}} \end{array}} \right]$$ \left[ {\begin{array}{*{20}{c}} {{{0}}{{.937\;8}}} \\ {{1}} \end{array}} \right] $线路2
    下载: 导出CSV

    表  4   采样不同步时的选线结果

    Table  4   Line selection results under asynchronous sampling

    Rf / Ω隶属度
    矩阵U
    各簇平均
    轮廓系数
    选线
    结果
    5$ \left[ {\begin{array}{*{20}{l}} {\bf {{{0}}{{.985\;6}}} }&{\bf {{{0}}{{.984\;5}}} }&{\bf {{{0}}{{.997\;7}}} }&{{{0}}{{.000\;2}}} \\ {{{0}}{{.014\;4}}}&{{{0}}{{.015\;5}}}&{{{0}}{{.002\;3}}}&{\bf {{{0}}{{.999\;8}}} } \end{array}} \right] $$ \left[ {\begin{array}{*{20}{c}} {{{0}}{{.968\;1}}} \\ {{1}} \end{array}} \right] $线路4
    800$ \left[ {\begin{array}{*{20}{l}} {{{0}}{{.000\;3}}}&{{{0}}{{.000\;5}}}&{{{0}}{{.000\;6}}}&{\bf {{{1}}{{.000\;0}}} } \\ {\bf {{{0}}{{.999\;7}}} }&{\bf {{{0}}{{.999\;5}}} }&{\bf {{{0}}{{.999\;4}}} }&{{{0}}{{.000\;0}}} \end{array}} \right] $$ \left[ {\begin{array}{*{20}{c}} {{1}} \\ {{{0}}{{.999\;6}}} \end{array}} \right] $线路4
    5 000$ \left[ {\begin{array}{*{20}{l}} {{{0}}{{.011\;7}}}&{{{0}}{{.013\;2}}}&{{{0}}{{.006\;7}}}&{\bf {{{0}}{{.946\;9}}} } \\ {\bf {{{0}}{{.988\;3}}} }&{\bf {{{0}}{{.986\;8}}} }&{\bf {{{0}}{{.993\;3}}} }&{{{0}}{{.053\;1}}} \end{array}} \right] $$ \left[ {\begin{array}{*{20}{c}} 1 \\ {{{0}}{{.998\;1}}} \end{array}} \right] $线路4
    下载: 导出CSV

    表  5   极性反接时的选线结果

    Table  5   Line selection results with anti-polarity

    Rf / Ω隶属度
    矩阵U
    各簇平均
    轮廓系数
    选线
    结果
    0.001$ \left[ {\begin{array}{*{20}{l}} {\bf {{{0}}{{.995\;0}}} }&{\bf {{{0}}{{.994\;8}}} }&{{{0}}{{.012\;6}}}&{\bf {{{0}}{{.995\;4}}} } \\ {{{0}}{{.005\;0}}}&{{{0}}{{.005\;2}}}&{\bf {{{0}}{{.987\;4}}} }&{{{0}}{{.004\;6}}} \end{array}} \right] $$ \left[ {\begin{array}{*{20}{c}} {{{0}}{{.999\;9}}} \\ 1 \end{array}} \right] $线路3
    60$ \left[ {\begin{array}{*{20}{l}} {\bf {{{0}}{{.997\;9}}} }&{\bf {{{0}}{{.999\;0}}} }&{{{0}}{{.000\;0}}}&{\bf {{{0}}{{.998\;7}}} } \\ {{{0}}{{.002\;1}}}&{{{0}}{{.001\;0}}}&{\bf {{{1}}{{.000\;0}}} }&{{{0}}{{.001\;3}}} \end{array}} \right] $$ \left[ {\begin{array}{*{20}{c}} {{{0}}{{.998\;3}}} \\ {{1}} \end{array}} \right] $线路3
    6 000$ \left[ {\begin{array}{*{20}{l}} {{{0}}{{.000\;6}}}&{{{0}}{{.000\;8}}}&{\bf {{{0}}{{.999\;9}}} }&{{{0}}{{.000\;9}}} \\ {\bf {{{0}}{{.999\;4}}} }&{\bf {{{0}}{{.999\;2}}} }&{{{0}}{{.000\;1}}}&{\bf {{{0}}{{.999\;1}}} } \end{array}} \right] $$ \left[ {\begin{array}{*{20}{c}} {{{0}}{{.999\;1}}} \\ {{1}} \end{array}} \right] $线路3
    下载: 导出CSV
  • [1] 高宏杰,赵建文,郭秀才. 煤矿电网单相漏电故障区段自动定位探索[J]. 工矿自动化,2021,47(5):106-111.

    GAO Hongjie,ZHAO Jianwen,GUO Xiucai. Research on automatic location of single-phase leakage fault zone in coal mine power network[J]. Industry and Mine Automation,2021,47(5):106-111.

    [2]

    LIU Penghui,DU Shaotong,SUN Kang,et al. Single-line-to-ground fault feeder selection considering device polarity reverse installation in resonant grounding system[J]. IEEE Transactions on Power Delivery,2021,36(4):2204-2212. DOI: 10.1109/TPWRD.2020.3022422

    [3]

    NIU Lin,WU Guiqing,XU Zhangsheng. Single-phase fault line selection in distribution network based on signal injection method[J]. IEEE Access,2021,9:21567-21578. DOI: 10.1109/ACCESS.2021.3055236

    [4] 张利,杨以涵,杨秀媛,等. 移动式比相法配电网接地故障定位研究[J]. 中国电机工程学报,2009,29(7):91-97. DOI: 10.3321/j.issn:0258-8013.2009.07.015

    ZHANG Li,YANG Yihan,YANG Xiuyuan,et al. Method of mobile phase-comparison for fault location of distribution network[J]. Proceeding of the CSEE,2009,29(7):91-97. DOI: 10.3321/j.issn:0258-8013.2009.07.015

    [5] 孙其东,张开如,刘建,等. 基于五次谐波和小波重构能量的配电网单相接地故障的选线方法研究[J]. 电测与仪表,2016,53(16):1-4. DOI: 10.3969/j.issn.1001-1390.2016.16.001

    SUN Qidong,ZHANG Kairu,LIU Jian,et al. Research on single-phase fault earth fault line selection method for the distribution network based on fifth harmonics and wavelet reconstruction[J]. Electrical Measurement & Instrumentation,2016,53(16):1-4. DOI: 10.3969/j.issn.1001-1390.2016.16.001

    [6] 栾晓明,武守远,贾春娟,等. 基于改进零序导纳法的单相接地故障选线原理[J]. 电网技术,2022,46(1):353-360. DOI: 10.13335/j.1000-3673.pst.2021.0425

    LUAN Xiaoming,WU Shouyuan,JIA Chunjuan,et al. Fault line selection principle of single-phase-to-ground fault based on improved zero-sequence admittance[J]. Power System Technology,2022,46(1):353-360. DOI: 10.13335/j.1000-3673.pst.2021.0425

    [7] 束洪春,龚振,田鑫萃,等. 基于故障特征频带及形态谱的单相接地故障选线[J]. 电网技术,2019,43(3):1041-1053.

    SHU Hongchun,GONG Zhen,TIAN Xincui,et al. Single line-to-ground fault line selection based on fault characteristic frequency band and morphological spectrum[J]. Power System Technology,2019,43(3):1041-1053.

    [8] 魏向向,温渤婴. 基于2阶累加生成相关性的谐振接地系统故障选线方法[J]. 电网技术,2017,41(5):1674-1682.

    WEI Xiangxiang,WEN Boying. A novel fault line detection method based on 2-order accumulated generating operation correlation analysis for resonant earthed system[J]. Power System Technology,2017,41(5):1674-1682.

    [9] 于群,尚雪丽. 一种矿井漏电保护选线方法[J]. 工矿自动化,2020,46(11):17-22.

    YU Qun,SHANG Xueli. A line selection method of mine leakage protection[J]. Industry and Mine Automation,2020,46(11):17-22.

    [10] 邓丰,梅龙军,唐欣,等. 基于时频域行波全景波形的配电网故障选线方法[J]. 电工技术学报,2021,36(13):2861-2870.

    DENG Feng,MEI Longjun,TANG Xin,et al. Faulty line selection method of distribution network based on time-frequency traveling wave panoramic waveform[J]. Transactions of China Electrotechnical Society,2021,36(13):2861-2870.

    [11] 王建元,朱永涛,秦思远. 基于方向行波能量的小电流接地系统故障选线方法[J]. 电工技术学报,2021,36(19):4085-4096.

    WANG Jianyuan,ZHU Yongtao,QIN Siyuan. Fault line selection method for small current grounding system based on directional traveling wave energy[J]. Transactions of China Electrotechnical Society,2021,36(19):4085-4096.

    [12] 陈奎,韦晓广,陈景波,等. 基于样本数据处理和ADABOOST的小电流接地故障选线[J]. 中国电机工程学报,2014,34(34):6228-6237.

    CHEN Kui,WEI Xiaoguang,CHEN Jingbo,et al. Fault line detection using sampled data processing and ADABOOST for small current grounding system[J]. Proceeding of the CSEE,2014,34(34):6228-6237.

    [13] 殷浩然,苗世洪,郭舒毓,等. 基于S变换相关度和深度学习的配电网单相接地故障选线新方法[J]. 电力自动化设备,2021,41(7):88-96. DOI: 10.16081/j.epae.202105028

    YIN Haoran,MIAO Shihong,GUO Shuyu,et al. Novel method for single-phase grounding fault line selection in distribution network based on S-transform correlation and deep learning[J]. Electric Power Automation Equipment,2021,41(7):88-96. DOI: 10.16081/j.epae.202105028

    [14] 郝帅,张旭,马瑞泽,等. 基于改进GoogLeNet的小电流接地系统故障选线方法[J]. 电网技术,2022,46(1):361-368.

    HAO Shuai,ZHANG Xu,MA Ruize,et al. Fault line selection method for small current grounding system based on improved GoogLeNet[J]. Power System Technology,2022,46(1):361-368.

    [15]

    HAMED A,MOSTAFA R,DANI A,et al. Refined composite multiscale dispersion entropy and its application to biomedical signals[J]. IEEE Transactions on Biomedical Engineering,2017,64(12):2872-2879. DOI: 10.1109/TBME.2017.2679136

    [16]

    ROSTAGHI M,AZAMI H. Dispersion entropy:a measure for time-series analysis[J]. IEEE Signal Processing Letters,2016,23(5):610-614. DOI: 10.1109/LSP.2016.2542881

    [17] 何玉灵,孙凯,王涛,等. 基于变分模态分解与精细复合多尺度散布熵的发电机匝间短路故障诊断[J]. 电力自动化设备,2021,41(3):164-172. DOI: 10.16081/j.epae.202101014

    HE Yuling,SUN Kai,WANG Tao,et al. Fault diagnosis of generator interturn short circuit fault based on variational mode decomposition and refined composite multiscale dispersion entropy[J]. Electric Power Automation Equipment,2021,41(3):164-172. DOI: 10.16081/j.epae.202101014

    [18] 李从志,郑近德,潘海洋,等. 基于精细复合多尺度散布熵与支持向量机的滚动轴承故障诊断方法[J]. 中国机械工程,2019,30(14):1713-1719,1726.

    LI Congzhi,ZHENG Jinde,PAN Haiyang,et al. Fault diagnosis method of rolling bearings based on refined composite multiscale dispersion entropy and support vector machine[J]. China Mechanical Engineering,2019,30(14):1713-1719,1726.

    [19]

    LIU Jingwei,XU Meizhi. Kernelized fuzzy attribute C-means clustering algorithm[J]. Fuzzy Sets and Systems,2008,159(18):2428-2445. DOI: 10.1016/j.fss.2008.03.018

    [20] 郭谋发. 配电网单相接地故障人工智能选线[M]. 北京: 中国水利水电出版社, 2020.

    GUO Moufa. Artificial intelligence line selection of single-phase grounding fault in distribution network[M]. Beijing: China Water & Power Press, 2020.

    [21] 卢丹. 基于WAMS的矿井高压电网单相接地故障选线及定位方法研究[D]. 北京: 中国矿业大学(北京), 2015.

    LU Dan. Study on single-phase earth fault line detection and fault location method of coal mine high-voltage grid base on WAMS[D]. Beijing: China University of Mining & Technology-Beijing, 2015.

图(4)  /  表(5)
计量
  • 文章访问数:  151
  • HTML全文浏览量:  54
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-24
  • 修回日期:  2022-07-25
  • 网络出版日期:  2022-08-14
  • 刊出日期:  2022-08-25

目录

    /

    返回文章
    返回