基于CT扫描的受载破裂煤样注浆封堵效应量化研究

李雁, 李兵, 姚帅, 姚邦华

李雁,李兵,姚帅,等. 基于CT扫描的受载破裂煤样注浆封堵效应量化研究[J]. 工矿自动化,2022,48(4):53-59. DOI: 10.13272/j.issn.1671-251x.17862
引用本文: 李雁,李兵,姚帅,等. 基于CT扫描的受载破裂煤样注浆封堵效应量化研究[J]. 工矿自动化,2022,48(4):53-59. DOI: 10.13272/j.issn.1671-251x.17862
LI Yan, LI Bing, YAO Shuai, et al. Quantitative study on grouting plugging effect of loaded fractured coal sample based on CT scanning[J]. Journal of Mine Automation,2022,48(4):53-59. DOI: 10.13272/j.issn.1671-251x.17862
Citation: LI Yan, LI Bing, YAO Shuai, et al. Quantitative study on grouting plugging effect of loaded fractured coal sample based on CT scanning[J]. Journal of Mine Automation,2022,48(4):53-59. DOI: 10.13272/j.issn.1671-251x.17862

基于CT扫描的受载破裂煤样注浆封堵效应量化研究

基金项目: 江苏省高校自然科学研究重大项目(21KJA560001);河南省自然科学基金项目(202300410182)。
详细信息
    作者简介:

    李雁(1980-),男,江苏连云港人,副教授,博士,主要从事高性能结构材料与安全控制等方面的研究工作,E-mail:liyan@xzit.edu.cn

    通讯作者:

    姚邦华(1984-),男,山东潍坊人,副教授,博士,主要从事煤矿安全方面的研究工作,E-mail:yaobanghua@126.com

  • 中图分类号: TD265

Quantitative study on grouting plugging effect of loaded fractured coal sample based on CT scanning

  • 摘要: 针对现有注浆煤岩体裂隙结构和注浆效果研究不能定量表征的问题,利用自主搭建的受载煤岩体注浆试验系统开展了不同受载破裂煤样(单轴和劈裂)的注浆试验,采用工业CT扫描设备对破裂煤样注浆前后的裂隙结构进行了CT扫描,应用图像分析软件VG Studio MAX对CT扫描数据重建模型所得到的数字煤样进行裂隙精准提取,对受载破裂煤样注浆前后三维裂隙形态和结构进行了数字化定量分析。结果表明:① 单轴加载破裂煤样主裂隙由煤样顶部两侧贯穿至煤样底部并汇聚,裂隙宽度基本保持不变,煤样主要在剪切应力作用下破裂,整体破碎程度较大,主裂隙网络伴生较多的小裂隙;注浆前后50 mm以上裂隙由1条转为0,总裂隙体积由12 000 mm3减小为5 700 mm3,降幅为52.5%,表明单轴破裂煤样裂隙结构相对不利于浆液扩散流动。劈裂破坏煤样主裂隙由顶部沿竖直方向向下延伸至煤样中下部,裂隙宽度较大,然后向一方倾斜45°继续延伸,裂隙宽度逐渐变小;注浆前后50 mm以上裂隙由2条转为0,总裂隙体积由3 430 mm3减小为312 mm3,降幅为90.9%,表明劈裂破坏煤样裂隙结构有利于浆液的流动和充填。② 注浆前后单轴加载破裂煤样渗透率由57×10−14 m2下降到1.2×10−14 m2,下降了97.9%;注浆前后劈裂破坏煤样渗透率由75×10−14 m2下降到1.3×10−14 m2,下降了98.3%,表明注浆对不同破坏形式煤样均具有显著的堵漏降渗效果。 ③ 对比2种煤样注浆前后裂隙体积和渗透率变化情况可以看出,虽然单轴加载破裂煤样注浆浆液仅充填了部分裂隙,但渗透率与原始煤样差别很小,表明通过阻隔漏气通道的连通性,即可有效封堵裂隙并取得良好的注浆封孔效果。研究结果可为破裂煤体注浆量化分析及煤层注浆封堵效果评价提供有益参考。
    Abstract: The existing research on the fracture structure and grouting effect of grouting coal and rock mass cannot be quantitatively characterized. In order to solve the problem, the self-built grouting test system for loaded coal and rock mass is used to carry out the grouting test of different loaded fractured coal samples(uniaxial and splitting). The CT scanning of the fractured coal sample before and after grouting are carried out by using industrial CT scanning equipment. The image analysis software VG Studio MAX is used to accurately extract the fractures of the digital coal sample obtained from CT scanning data reconstruction model. The digital quantitative analysis of the three-dimensional fracture morphology and structure of the loaded fractured coal samples before and after grouting is carried out. ① The results show that the main fracture of the fractured coal sample under uniaxial loading penetrates from both sides of the top of the coal sample to the bottom of the coal sample and converges. The fracture width is basically unchanged. The coal sample is mainly fractured under the action of shear stress. The overall degree of fragmentation is large. The main fracture network is accompanied by more small fractures. The number of fracture above 50 mm is changed from 1 before grouting to 0 after grouting. The total fracture volume is reduced from 12 000 mm3 to 5 700 mm3 by 52.5%. It shows that the fracture structure of fractured coal sample under uniaxial loading is not conducive to slurry diffusion flow. The main fracture of splitting failure coal sample extends downward from the top to the middle and lower part of the coal sample along the vertical direction. The fracture width is large. And then the fracture tilts 45° to one side and continues to extend. The fracture width gradually narrows. The number of fractures above 50 mm is changed from 2 before grouting to 0 after grouting. The total fracture volume is reduced from 3 430 mm3 to 312 mm3 by 90.9%. It shows that the fracture structure of splitting failure coal sample is conducive to the flow and filling of slurry. ② The permeability of fractured coal sample under uniaxial loading is decreased from 57×10−14 m2 before grouting to 1.2×10−14 m2 after grouting by 97.9%. The permeability of splitting failure coal sample is decreased from 75×10−14 m2 before grouting to 1.3×10−14 m2 after grouting by 98.3%. It shows that grouting has a significant effect of plugging leakage and reducing seepage on coal sample with different failure forms. ③ The change of fracture volume and permeability of two kinds of coal samples before and after grouting are compared. It shows that although the grouting slurry of fractured coal sample under uniaxial loading only fills part of the fracture, the permeability difference is very small compared with the original coal sample. This result indicates that by blocking the connectivity of the air leakage channel, the fractures can be effectively blocked and a good grouting hole sealing effect is achieved. The research results can provide useful references for quantitative analysis of grouting in fractured coal and evaluation of grouting plugging effect in coal seam.
  • 图  1   CT扫描试验系统

    Figure  1.   CT scanning test system

    图  2   煤样注浆系统

    Figure  2.   Coal sample grouting system

    图  3   单轴加载破裂煤样裂隙结构

    Figure  3.   Fracture structure of fractured coal samples under uniaxial loading

    图  4   劈裂破坏煤样裂隙结构

    Figure  4.   Fracture structure of splitting failure coal samples

    图  5   单轴加载破裂煤样注浆后裂隙结构

    Figure  5.   Fracture structure of fractured coal samples under uniaxial loading after grouting

    图  6   劈裂破坏煤样注浆后裂隙结构

    Figure  6.   Fracture structure of splitting failure coal samples after grouting

    图  7   单轴破裂煤样注浆前后裂隙数量占比

    Figure  7.   Fracture number ratio of fractured coal samples under uniaxial loading before and after grouting

    图  8   单轴破裂煤样注浆前后裂隙体积占比

    Figure  8.   Fracture volume ratio of fractured coal samples under uniaxial loading before and after grouting

    图  9   劈裂破坏煤样注浆前后裂隙数量占比

    Figure  9.   Fracture number ratio of splitting failure coal samples before and after grouting

    图  10   劈裂破坏煤样注浆前后裂隙体积占比

    Figure  10.   Fracture volume ratio of splitting failure coal samples before and after grouting

    表  1   试验煤样工业分析参数

    Table  1   Industrial analysis parameters of test coal samples %

    煤样编号水分灰分挥发分
    煤样11.288.637.60
    煤样21.727.497.37
    下载: 导出CSV

    表  2   煤样注浆前后基本数据对比

    Table  2   Comparison of coal sample basic data before and after grouting

    煤样
    破坏
    注浆前
    质量/g
    注浆后
    质量/g
    原煤渗透
    率/10−14 m2
    受载破裂渗
    透率/10−14 m2
    注浆后渗透
    率/10−14 m2
    劈裂2893051.1751.3
    单轴2953080.8571.2
    下载: 导出CSV
  • [1] 谢和平,吴立新,郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报,2019,44(7):1949-1960.

    XIE Heping,WU Lixin,ZHENG Dezhi. Prediction on the energy consumption and coal demand of China in 2025[J]. Journal of China Coal Society,2019,44(7):1949-1960.

    [2] 张宏图,李阳,姚邦华,等. 瓦斯抽采钻孔封孔水泥砂浆黏度时变性扩散模型[J]. 煤炭科学技术,2020,48(10):52-59.

    ZHANG Hongtu,LI Yang,YAO Banghua,et al. Time-dependent viscosity diffusion model of cement mortar grouting for gas drainage borehole sealing[J]. Coal Science and Technology,2020,48(10):52-59.

    [3] 周福宝,孙玉宁,李海鉴,等. 煤层瓦斯抽采钻孔密封理论模型与工程技术研究[J]. 中国矿业大学学报,2016,45(3):433-439.

    ZHOU Fubao,SUN Yuning,LI Haijian,et al. Research on the theoretical model and engineering technology of the coal seam gas drainage hole sealing[J]. Journal of China University of Mining & Technology,2016,45(3):433-439.

    [4] 柳昭星,靳德武,尚宏波,等. 矿区岩溶裂隙岩体帷幕截流注浆参数确定研究[J]. 煤炭科学技术,2019,47(6 ):81-86.

    LIU Zhaoxing,JIN Dewu,SHANG Hongbo,et al. Study on determination of curtain closure grouting parameters of fractured rock mass in karst mining area[J]. Coal Science and Technology,2019,47(6 ):81-86.

    [5]

    LIU Xiaofan,WANG Junguang,HUANG Kun,et al. Experimental study on dynamic water grouting of modified water-soluble polyurethane[J]. KSCE Journal of Civil Engineering,2019,23(11):3897-3906.

    [6]

    ZHOU Zilong,DU Xueming,CHEN Zhao,et al. Grouting diffusion of chemical fluid flow in soil with fractal characteristics[J]. Journal of Central South University,2017,24(5):182-188.

    [7] 于跃. 注浆加固煤体力学性质与渗透率试验研究[D]. 哈尔滨: 黑龙江科技大学, 2015.

    YU Yue. Experimental study on mechanical properties and permeability of coal with grouting reinforcement[D]. Harbin: Heilongjiang University of Science and Technology, 2015.

    [8] 钱自卫,姜振泉,曹丽文,等. 弱胶结孔隙介质渗透注浆模型试验研究[J]. 岩土力学,2013,34(1):139-142,147.

    QIAN Ziwei,JIANG Zhenquan,CAO Liwen,et al. Experiment study of penetration grouting model for weakly cemented porous media[J]. Rock and Soil Mechanics,2013,34(1):139-142,147.

    [9] 刘奇,陈卫忠,袁敬强,等. 基于渗流−侵蚀理论的岩溶充填介质注浆加固效果评价[J]. 岩石力学与工程学报,2020,39(3):1-9.

    LIU Qi,CHEN Weizhong,YUAN Jingqiang,et al. Evaluation of grouting reinforcement effect for karst filling medium based on seepage-erosion theory[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(3):1-9.

    [10] 郭东明,何天宇,杨仁树,等. 裂隙岩石试件超细水泥注浆效果CT分析[J]. 采矿与安全工程学报,2017,34(5):987-992.

    GUO Dongming,HE Tianyu,YANG Renshu,et al. CT analysis on micro-cement grouting effect for fractured rock sample[J]. Journal of Mining & Safety Engineering,2017,34(5):987-992.

    [11] 魏建平,姚邦华,刘勇,等. 裂隙煤体注浆浆液扩散规律及变质量渗流模型研究[J]. 煤炭学报,2020,45(1):204-212.

    WEI Jianping,YAO Banghua,LIU Yong,et al. Grouting fluid diffusion law and variable mass seepage model for fractured coal[J]. Journal of China Coal Society,2020,45(1):204-212.

    [12] 杨仁树,薛华俊,郭东明,等. 基于注浆试验的深井软岩CT分析[J]. 煤炭学报,2016,41(2):345-351.

    YANG Renshu,XUE Huajun,GUO Dongming,et al. Laboratory grouting experiment based CT analysis of grouted soft rocks in deep mines[J]. Journal of China Coal Society,2016,41(2):345-351.

  • 期刊类型引用(10)

    1. 杨瑜亮,黄忠念,鲁杰,张旭. 永磁偶合器在VPSA制氧系统应用. 冶金设备. 2022(06): 105-107+94 . 百度学术
    2. 朱玉芹. 大功率矿用盘式永磁偶合器软启动瞬态温度场研究. 煤矿机械. 2021(01): 34-36 . 百度学术
    3. 杨鹏,王亮,张勇,童佳乐,王雷. 新型风力发电机组装置的发电特性研究. 邵阳学院学报(自然科学版). 2021(02): 54-61 . 百度学术
    4. 葛研军,李佩聪,张剑,杨小聪. 绕线式磁力耦合器热特性分析. 机械设计与制造. 2021(07): 94-97 . 百度学术
    5. 李啸,韩雪岩,朱龙飞,马鑫. 基于流固耦合模型的永磁耦合器导体铜盘散热研究. 电机与控制应用. 2021(10): 58-64 . 百度学术
    6. 何家锐,李成林,米亚迪. 双盘式磁力耦合器温度场研究. 机床与液压. 2020(01): 1-4 . 百度学术
    7. 郭永存,何家锐,李成林. 基于永磁涡流传动的长距离带式输送机启动特性研究. 煤炭科学技术. 2020(01): 54-60 . 百度学术
    8. 唐正强,惠佳博,周东东,吴兵. 磁力耦合器空气散热结构设计与分析. 组合机床与自动化加工技术. 2020(03): 136-139+143 . 百度学术
    9. 唐正强,惠佳博,周东东,潘小飞. 大功率磁力耦合器冷却水散热研究. 机械设计与制造. 2018(09): 201-204 . 百度学术
    10. 郭永存,陈健康,胡坤,王鹏彧,王爽,方成. 恒负载工况下调速型磁力偶合器气隙特性研究. 工矿自动化. 2017(11): 74-79 . 本站查看

    其他类型引用(7)

图(10)  /  表(2)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  40
  • PDF下载量:  29
  • 被引次数: 17
出版历程
  • 收稿日期:  2021-12-22
  • 修回日期:  2022-02-18
  • 网络出版日期:  2022-04-24
  • 刊出日期:  2022-04-24

目录

    /

    返回文章
    返回