面向煤矸识别的近红外反射光谱数据预处理方法

丁震, 常博深

丁震, 常博深. 面向煤矸识别的近红外反射光谱数据预处理方法[J]. 工矿自动化, 2021, 47(12): 93-97. DOI: 10.13272/j.issn.1671-251x.17853
引用本文: 丁震, 常博深. 面向煤矸识别的近红外反射光谱数据预处理方法[J]. 工矿自动化, 2021, 47(12): 93-97. DOI: 10.13272/j.issn.1671-251x.17853
DING Zhen, CHANG Boshen. Near-infrared reflectance spectrum data preprocessing method for coal gangue identification[J]. Journal of Mine Automation, 2021, 47(12): 93-97. DOI: 10.13272/j.issn.1671-251x.17853
Citation: DING Zhen, CHANG Boshen. Near-infrared reflectance spectrum data preprocessing method for coal gangue identification[J]. Journal of Mine Automation, 2021, 47(12): 93-97. DOI: 10.13272/j.issn.1671-251x.17853

面向煤矸识别的近红外反射光谱数据预处理方法

基金项目: 

国家自然科学基金项目(52104169)。

详细信息
    作者简介:

    丁震(1980-),男,山西万荣人,高级工程师,主要从事煤矿机电技术、煤矿智能化、露天卡车无人驾驶方面的研究及管理工作,E-mail:zhen.ding@chnenergy.com.cn。

  • 中图分类号: TD67

Near-infrared reflectance spectrum data preprocessing method for coal gangue identification

  • 摘要: 利用近红外反射光谱进行煤矸识别时,光谱采集装置距工作面的探测距离变化及粉尘干扰会对近红外反射光谱产生影响。为选取最佳的煤矸近红外反射光谱预处理方法,收集了外观相近的无烟煤和矸石样本,在实验室搭建了由近红外光谱仪、准直镜、卤素灯等组成的光谱采集装置,采集了不同探测距离(1.2,1.5,1.8 m)和粉尘浓度(200,500,800 mg/m3)下的煤矸近红外反射光谱。通过对煤矸近红外反射光谱特征分析,发现探测距离和粉尘浓度变化对煤矸近红外反射光谱曲线波形和吸收谷位置无明显影响,即不会改变光谱特征吸收波长点,但对煤矸近红外反射光谱的反射率产生明显影响,即光谱反射率随着探测距离和粉尘浓度的增大而减小,会造成煤矸近红外反射光谱漂移。为增强煤矸近红外反射光谱吸收特征,利用微分、标准正态变量变换和多项式平滑3种方法对光谱数据进行预处理,并将经过预处理的煤矸近红外反射光谱数据输入至粒子群优化BP神经网络模型进行煤矸识别。实验结果表明,微分预处理方法对探测距离和粉尘浓度变化下采集的煤矸近红外反射光谱数据的优化效果最佳,能有效消除探测距离和粉尘浓度变化对光谱反射率的影响。
    Abstract: When using near-infrared reflectance spectrum to identify coal gangue, the change of detection distance between spectrum acquisition device and working face and dust interference will affect near-infrared reflectance spectrum. In order to select the best pre-processing method for near infrared reflectance spectrum for coal gangue, samples of anthracite and gangue with similar appearance are collected. A spectrum acquisition device consisting of near infrared spectrometer, collimator and halogen lamp is set up in the laboratory to acquire near infrared reflectance spectrum of coal gangue at different detection distances (1.2,1.5,1.8 m) and dust concentrations (200, 500, 800 mg/m3). Through the analysis of near-infrared reflectance spectrum characteristics of coal gangue, it is found that the detection distance and dust concentration change have no obvious impact on the waveform of near-infrared reflectance spectrum curve and the position of absorption valley of coal gangue. The absorption wavelength point of spectral characteristics will not be changed. However, the reflectance of near-infrared reflectance spectrum of coal gangue will be significantly affected. The spectral reflectance will decrease with the increase of detection distance and dust concentration, which will cause near-infrared reflectance spectrum drift of coal gangue. In order to enhance the absorption characteristics of near-infrared reflectance spectrum of coal gangue, the spectrum data are preprocessed by differential, standard normal variable transformation and polynomial smoothing methods. The preprocessed near-infrared reflectance spectrum data of coal gangue are input to the particle swarm optimization BP neural network model for coal gangue identification. The experimental results show that the differential preprocessing method has the best optimization effect on the near-infrared reflectance spectrum data of coal gangue collected under the change of detection distance and dust concentration, and can eliminate the impact of detection distance and dust concentration on the spectral reflectance effectively.
  • [1] 曾翰林.基于图像处理的煤矸识别技术研究[D].唐山:华北理工大学,2015.

    ZENG Hanlin.Research on recognition technology of coal and gangue based on image processing[D].Tangshan:North China University of Science and Technology,2015.

    [2] 郭永存,何磊,刘普壮,等.煤矸双能X射线图像多维度分析识别方法[J].煤炭学报,2021,46(1):300-309.

    GUO Yongcun,HE Lei,LIU Puzhuang,et al.Multi-dimensional analysis and recognition method of coal and gangue dual-energy X-ray images[J].Journal of China Coal Society,2021,46(1):300-309.

    [3] 马瑞.基于声波信号的煤矸界面识别研究[D].济南:山东大学,2010. MA Rui.Study on the coal-rock interface recognition based on acoustic wave technique[D].Jinan:Shandong University,2010.
    [4] 王中举,毛馨凯,孙江.基于视频解析的智能煤矸分选技术研究[J].工矿自动化,2021,47(增刊1):122-125.

    WANG Zhongju,MAO Xinkai,SUN Jiang.Research on intelligent coal-gangue separation technology based on video analysis[J].Industry and Mine Automation,2021,47(S1):122-125.

    [5] 余乐,郑力新,杜永兆,等.采用部分灰度压缩扩阶共生矩阵的煤和煤矸石图像识别[J].华侨大学学报(自然科学版),2018,39(6):906-912.

    YU Le,ZHENG Lixin,DU Yongzhao,et al.Image recognition method of coal and coal gangue based on partial grayscale compression extended coexistence matrix[J].Journal of Huaqiao University(Natural Science),2018,39(6):906-912.

    [6] 窦希杰,王世博,刘后广,等.基于EMD特征提取与随机森林的煤矸识别方法[J].工矿自动化,2021,47(3):60-65.

    DOU Xijie,WANG Shibo,LIU Houguang,et al.Coal and gangue identification method based on EMD feature extraction and random forest[J].Industry and Mine Automation,2021,47(3):60-65.

    [7]

    YANG En,GE Shirong,WANG Shibo.Characterization and identification of coal and carbonaceous shale using visible and near-infrared reflectance spectroscopy[J].Journal of Spectroscopy,2018(2):1-13.

    [8] 宋亮,刘善军,毛亚纯,等.基于可见光-近红外光谱的煤种分类方法[J].东北大学学报(自然科学版),2017,38(10):1473-1476.

    SONG Liang,LIU Shanjun,MAO Yachun,et al.Coal classification based on visible and near-infrared spectrum[J].Journal of Northeastern University(Natural Science),2017,38(10):1473-1476.

    [9] 杨恩,王世博,葛世荣,等.基于反射光谱的煤岩感知实验研究[J].煤炭学报,2019,44(12):3912-3920.

    YANG EN,WANG Shibo,GE Shirong,et al.Experimental study on coal-rock perception based on reflectance spectroscopy[J].Journal of China Coal Society,2019,44(12):3912-3920.

    [10] 韦任,徐良骥,孟雪莹,等.基于高光谱特征吸收峰的煤岩识别方法[J].光谱学与光谱分析,2021,41(6):1942-1948.

    WEI Ren,XU Liangji,MENG Xueying,et al.Coal and rock identification method based on hyper spectral feature absorption peak[J].Spectroscopy and Spectral Analysis,2021,41(6):1942-1948.

    [11] 周悦,王世博,葛世荣,等.不同探测距离与角度下典型煤岩近红外光谱特征与定性分析[J].光谱学与光谱分析,2020,40(9):2737-2742.

    ZHOU Yue,WANG Shibo,GE Shirong,et al.Near infrared spectral characteristics and qualitative analysis of typical coal-rock under different detection distances and angles[J].Spectroscopy and Spectral Analysis,2020,40(9):2737-2742.

    [12] 王雅圣,杨梦,骆志远,等.基于置信学习机与近红外光谱的煤种快速分类方法[J].光谱学与光谱分析,2016,36(6):1685-1689.

    WANG Yasheng,YANG Meng,LUO Zhiyuan,et al.Rapid coal classification based on confidence machine and near infrared spectroscopy[J].Spectroscopy and Spectral Analysis,2016,36(6):1685-1689.

    [13] 张守祥,张学亮,刘帅,等.智能化放顶煤开采的精确放煤控制技术[J].煤炭学报,2020,45(6):2008-2020.

    ZHANG Shouxiang,ZHANG Xueliang,LIU Shuai,et al.Intelligent precise control technology of fully mechanized top coal caving face[J].Journal of China Coal Society,2020,45(6):2008-2020.

    [14] 郭靖雯,先怡衡,肖薇,等.红外光谱的煤精类文物材质判别方法[J].光谱学与光谱分析,2021,41(5):1424-1429.

    GUO Jingwen,XIAN Yiheng,XIAO Wei,et al.Study on the method of distinguishing the material of jet-like cultural relics based on infrared spectra[J].Spectroscopy and Spectral Analysis,2021,41(5):1424-1429.

    [15] 贾桂红,张建军,郑海明.基于离散频谱校正的差分吸收光谱数据处理方法研究[J].计量学报,2021,42(8):1081-1086.

    JIA Guihong,ZHANG Jianjun,ZHENG Haiming.Study on differential optical absorption spectroscopy data processing based on discrete spectrum correction[J].Acta Metrologica Sinica,2021,42(8):1081-1086.

计量
  • 文章访问数:  291
  • HTML全文浏览量:  53
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-19
  • 修回日期:  2021-12-11
  • 刊出日期:  2021-12-19

目录

    /

    返回文章
    返回