基于数字孪生和概率神经网络的矿用通风机预测性故障诊断研究

Research on the predictive fault diagnosis of mine ventilator based on digital twin and probabilistic neural network

  • 摘要: 针对当前矿用通风机故障诊断方法存在预测性较差、准确率较低的问题,提出了一种基于数字孪生和概率神经网络(PNN)的矿用通风机预测性故障诊断方法。利用Unity3D、3dsMax、SciFEA等搭建通风机的数字孪生模型,模拟出真实通风机的结构特点、物理属性和运行规则,利用PREspective与通风机的PLC实时通信,将通风机的运行状态实时映射至数字孪生模型中;以通风机的数字孪生模型为基础,结合专家知识、机器学习、历史数据等构建了通风机预测性故障诊断模型,通过分析通风机的实时数据与运行状态之间的关系,不断学习并更新模型参数;采用改进的鲸鱼优化算法(IWOA)通过包围猎物、捕食猎物和搜索猎物的生物行为求取平滑因子最优值并赋予PNN,利用优化后的PNN对通风机进行预测性故障诊断,对比通风机预测性故障诊断模型判断结果与实际情况是否相符,若诊断错误,则需要对预测性故障诊断模型中的参数进行修正,直到故障判断准确。实验结果表明,与遗传算法(GA)、粒子群算法(PSO)、鲸鱼优化算法(WOA)优化后的PNN故障诊断精度相比,IWOA优化后的PNN故障诊断精度达97.5%,说明基于数字孪生和PNN的矿用通风机预测性故障诊断方法可以满足通风机故障诊断的实时性与准确性要求。

     

    Abstract: In order to solve the problems of poor predictability and low accuracy in the current fault diagnosis methods of mine ventilator, a predictive fault diagnosis method of mine ventilator based on digital twin and probabilistic neural network(PNN)is proposed.Unity3D, 3dsMax and SciFEA are used to build the digital twin model of ventilator to simulate the structural characteristics, physical properties and operation rules of the real ventilator, and the method uses PREspective to communicate with the PLC of the ventilator in real time to map the operation status of the ventilator to the digital twin model in real time.Based on the digital twin model of the ventilator, combined with expert knowledge, machine learning and historical data, the study constructs a predictive fault diagnosis model of the ventilator.The model continuously learns and updates the model parameters by analyzing the relationship between the real-time data and the operation status of the ventilator.The improved whale optimization algorithm(IWOA)is used to obtain the optimal value of the smoothing factor through the biological behaviors of surrounding prey, preying and searching prey, and assigns the optimal value to the PNN.The optimized PNN is applied to perform predictive fault diagnosis of the ventilator, and the result of the predictive fault model of the ventilator is compared with the actual situation to judge whether the results match the actual situation.If the diagnosis is wrong, the predictive fault diagnosis model needs to be corrected until the fault judgment is accurate.The experimental results show that compared with the PNN fault diagnosis accuracy optimized by the genetic algorithm(GA), particle swarm optimization algorithm(PSO)and whale optimization algorithm(WOA), the fault diagnosis accuracy of PNN optimized by IWOA reaches 97.5%, indicating that the predictive fault diagnosis method of mine ventilator based on digital twin and PNN can meet the requirements of real-time and accuracy of ventilator fault diagnosis.

     

/

返回文章
返回