煤机设备轴承剩余寿命预测方法研究

孙永新

孙永新. 煤机设备轴承剩余寿命预测方法研究[J]. 工矿自动化, 2021, 47(11): 126-130. DOI: 10.13272/j.issn.1671-251x.17834
引用本文: 孙永新. 煤机设备轴承剩余寿命预测方法研究[J]. 工矿自动化, 2021, 47(11): 126-130. DOI: 10.13272/j.issn.1671-251x.17834
SUN Yongxin. Research on bearing residual life prediction method of coal mine machinery equipment[J]. Journal of Mine Automation, 2021, 47(11): 126-130. DOI: 10.13272/j.issn.1671-251x.17834
Citation: SUN Yongxin. Research on bearing residual life prediction method of coal mine machinery equipment[J]. Journal of Mine Automation, 2021, 47(11): 126-130. DOI: 10.13272/j.issn.1671-251x.17834

煤机设备轴承剩余寿命预测方法研究

详细信息
    作者简介:

    孙永新(1980-),男,山东单县人,高级工程师,硕士,长期从事煤矿安全技术管理工作,E-mail:759397507@qq.com。

  • 中图分类号: TD67

Research on bearing residual life prediction method of coal mine machinery equipment

  • 摘要: 煤机设备轴承剩余寿命预测对设备维护具有重要意义。现有的轴承剩余寿命预测方法或难以建立精确的轴承失效数学模型,或预测精度受样本完备性和准确性的制约,且退化特征量通常采用时域、频域指标,受煤机恶劣工作环境影响较大,导致预测精度不高。针对该问题,提出一种基于经验模态分解(EMD)和灰色模型(GM)的煤机设备轴承剩余寿命预测方法:采用EMD对煤机设备轴承振动加速度信号进行滤波处理;提取滤波信号的均方根作为表征轴承健康状态的退化特征量,形成退化特征量序列;采用退化特征量序列训练GM,进而建立GM轴承剩余寿命预测模型来预测退化特征量的变化趋势,以退化特征量达到设定阈值的时间间隔作为剩余寿命预测值。试验台试验和工程应用结果表明,该方法可有效预测煤机设备轴承剩余寿命,预测精度较高,预测结果能指导现场设备维护。
    Abstract: The bearing residual life prediction of coal mine machinery equipment is of great significance for equipment maintenance.The existing bearing residual life prediction methods are either difficult to establish an accurate mathematical model of bearing failure, or the prediction precision is constrained by the sample completeness and accuracy.And the degradation characteristic quantity usually adopts time domain and frequency domain indicators, which are greatly affected by the harsh working environment of coal mine machinery equipment, resulting in low prediction precision.In order to solve this problem, a bearing residual life prediction method of coal mine machinery equipment based on empirical mode decomposition(EMD)and grey model(GM)is proposed.EMD is used to filter the vibration acceleration signal of coal mine machinery equipment bearings.The root mean square of the filtered signal is extracted as the degraded characteristic quantity representing the bearing health state so as to form the degraded characteristic quantity sequence.The GM is trained with the degraded characteristic quantity sequence, then the GM bearing residual life prediction model is established to predict the change trend of the degraded characteristic quantity, and the time interval when the degraded characteristic quantity reaches the set threshold is used as the residual life prediction value.The test bench and engineering application results show that the method can effectively predict the bearing residual life of coal mine machinery equipment with high prediction precision, and the prediction results can guide field equipment maintenance.
  • [1] 奚立峰,黄润青,李兴林,等.基于神经网络的球轴承剩余寿命预测[J].机械工程学报,2007,43(10):137-143.

    XI Lifeng,HUANG Runqing,LI Xinglin,et al.Residual life predictions for ball bearing based on neural networks[J].Chinese Journal of Mechanical Engineering,2007,43(10):137-143.

    [2]

    EI-THALJI I,JANTUNEN E.Dynamic modeling of wear evolution in rolling bearings[J].Tribology International,2015,84(84):90-99.

    [3] 陈玉莲,肖曙红,李俊文.角接触球轴承疲劳寿命影响因素分析[J].机床与液压,2013,41(23):85-87.

    CHEN Yulian,XIAO Shuhong,LI Junwen.Influencing factors on fatigue life of angular contact ball bearing[J].Machine Tool & Hydraulics,2013,41(23):85-87.

    [4] 徐东,徐永成,陈循,等.基于临界曲面的改进Paris定律球轴承疲劳寿命预测方法[J].机械工程学报,2011,47(2):51-57.

    XU Dong,XU Yongcheng,CHEN Xun,et al.Fatigue life prediction of ball bearings by modified paris law based on critical curved surface[J].Journal of Mechanical Engineering,2011,47(2):51-57.

    [5] 徐鹤琴,汪久根,王庆九.滚动轴承疲劳失效过程与寿命模型的研究[J].轴承,2016(4):57-62.

    XU Heqin,WANG Jiugen,WANG Qingjiu.Study on life model and fatigue failure process for rolling bearings[J].Bearing,2016(4):57-62.

    [6] 丁锋,何正嘉,訾艳阳,等.基于设备状态振动特征的比例故障率模型可靠性评估[J].机械工程学报,2009,45(12):89-94.

    DING Feng,HE Zhengjia,ZI Yanyang,et al.Reliability assessment based on equipment condition vibration feature using proportional hazards model[J].Journal of Mechanical Engineering,2009,45(12):89-94.

    [7]

    GURU P,SRIRAM N,MAHESH D P.A probabilistic approach to remaining useful life prediction of rolling element bearings[J].Structural Health Monitoring,2019,18(2):466-485.

    [8] 韩茂祥,姚鲁群.航空发动机主轴轴承使用寿命的概率分布与可靠性分析[J].南京理工大学学报(自然科学版),2002,26(5):552-556.

    HAN Maoxiang,YAO Luqun.The probability distribution and reliability analysis of the life of air-engine's main axle bearings[J].Journal of Nanjing University of Science and Technology,2002,26(5):552-556.

    [9]

    KOBAYASHI K,KAITO K,LETHANH N.A statistical deterioration forecasting method using hidden Markov model for infrastructure management[J].Transportation Research Part B,2012,46(4):544-561.

    [10]

    ZHANG Zheng,LI Liang,ZHAO Wei.Tool life prediction model based on GA-BP neural network[J].Materials Science Forum,2016(836/837):256-262.

    [11] 张焱,汤宝平,熊鹏.多尺度变异粒子群优化MK-LSSVM的轴承寿命预测[J].仪器仪表学报,2016,37(11):2489-2496.

    ZHANG Yan,TANG Baoping,XIONG Peng.Rolling element bearing life prediction based on multi-scale mutation particle swarm optimized multi-kernel least square support vector machine[J].Chinese Journal of Scientific Instrument,2016,37(11):2489-2496.

    [12] 董绍江.基于优化支持向量机的空间滚动轴承寿命预测方法研究[D].重庆:重庆大学,2012.

    DONG Shaojiang.Research on space bearing life prediction method based on optimized support vector machine[D].Chongqing:Chongqing University,2012.

    [13] 马海龙.灰色模型GM(1,1)在带式输送机轴承劣化趋势预测中的应用[J].煤矿机电,2019,40(4):51-54.

    MA Hailong.Application of grey model GM(1,1)in prediction of bearing deterioration trend of belt conveyor[J].Colliery Mechanical & Electrical Technology,2019,40(4):51-54.

    [14] 庞维建,马海龙,朱益军.EMD滤波在煤矿电动机故障诊断中的应用[J].工矿自动化,2015,41(3):93-95.

    PANG Weijian,MA Hailong,ZHU Yijun.Application of EMD filter to fault diagnosis of coal mine motor[J].Industry and Mine Automation,2015,41(3):93-95.

    [15] 马海龙,王军.电动机联接性故障诊断方法及其应用[J].工矿自动化,2017,43(4):77-81.

    MA Hailong,WANG Jun.Connectivity fault diagnosis method of motor and its application[J].Industry and Mine Automation,2017,43(4):77-81.

    [16]

    WANG Fengtao,LIU Xiaofei,LIU Chenli,et al.Remaining useful life prediction method of rolling bearings based on Pchip-EEMD-GM(1,1)model[J].Shock and Vibration,2018,2018:3013684.1-3013684.10.

    [17] 申中杰,陈雪峰,何正嘉,等.基于相对特征和多变量支持向量机的滚动轴承剩余寿命预测[J].机械工程学报,2013,49(2):183-189.

    SHEN Zhongjie,CHEN Xuefeng,HE Zhengjia,et al.Remaining life predictions of rolling bearing based on relative features and multivariable support vector machine[J].Journal of Mechanical Engineering,2013,49(2):183-189.

    [18]

    WANG Biao,LEI Yaguo,LI Naipeng,et al.A hybrid prognostics approach for estimating remaining useful life of rolling element bearings[J].IEEE Transactions on Reliability,2018:1-12.

    [19] 机械设备振动标准[EB/OL].[2021-09-01]. https://wenku.baidu.com/view/c9daa0f782eb6294dd88d0d 233d4b14e85243ebc.html. Mechanical equipment vibration standard[EB/OL].[2021-09-01]. https://wenku.baidu.com/view/c9daa0f782eb6294dd88d0d233d4b14e85243ebc.html.
计量
  • 文章访问数:  104
  • HTML全文浏览量:  7
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-29
  • 修回日期:  2021-11-11
  • 刊出日期:  2021-11-19

目录

    /

    返回文章
    返回