用于智能矿山移动边缘计算的二维动态匹配算法

赵端, 申澄洋, 史新国, 刘柯

赵端,申澄洋,史新国,等. 用于智能矿山移动边缘计算的二维动态匹配算法[J]. 工矿自动化,2022,48(4):89-95. DOI: 10.13272/j.issn.1671-251x.17782
引用本文: 赵端,申澄洋,史新国,等. 用于智能矿山移动边缘计算的二维动态匹配算法[J]. 工矿自动化,2022,48(4):89-95. DOI: 10.13272/j.issn.1671-251x.17782
ZHAO Duan, SHEN Chengyang, SHI Xinguo, et al. Two-dimensional dynamic matching algorithm for mobile edge computing in intelligent mine[J]. Journal of Mine Automation,2022,48(4):89-95. DOI: 10.13272/j.issn.1671-251x.17782
Citation: ZHAO Duan, SHEN Chengyang, SHI Xinguo, et al. Two-dimensional dynamic matching algorithm for mobile edge computing in intelligent mine[J]. Journal of Mine Automation,2022,48(4):89-95. DOI: 10.13272/j.issn.1671-251x.17782

用于智能矿山移动边缘计算的二维动态匹配算法

基金项目: 天地科技股份有限公司科技创新创业资金专项资助项目(2019-TD-ZD007);淄博矿业集团有限责任公司“智慧矿山”关键技术研发开放基金项目(2019LH06)。
详细信息
    作者简介:

    赵端(1985—),男,河北承德人,副研究员,博士,主要研究方向为无线传感器网络、机器学习,E-mail:295318654@qq.com

  • 中图分类号: TD67

Two-dimensional dynamic matching algorithm for mobile edge computing in intelligent mine

  • 摘要: 针对智能矿山井下移动边缘计算(MEC)应用中存在的由于资源分配不合理,移动用户将任务卸载到非最优边缘服务器,导致额外的传输时间和执行延迟,从而造成总任务完成率下降的问题,提出了一种基于偏好的二维动态匹配算法,优化MEC系统中资源分配决策。将1个时隙内MEC系统中移动用户的位置、任务所需计算量等数据发送至边缘服务器,根据设定的偏好值大小,形成边缘服务器对移动用户的偏好表,同时移动用户根据物理距离的不同,对所有边缘服务器也形成偏好表,2张偏好表相结合形成一张二维动态偏好表,进而抽象为一个二维矩阵,通过基于偏好的二维动态匹配算法对二维矩阵进行处理,得到移动用户和边缘服务器的匹配优化结果。仿真结果表明:与常规MEC场景卸载算法相比,基于偏好的二维动态匹配算法能够有效缓解大量突发任务场景下总任务完成率下降的问题,在极端情况下总任务完成率能够达到60%以上。
    Abstract: In the application of mobile edge computing(MEC) in intelligent mine, the mobile users unload tasks to non-optimal edge servers due to unreasonable resource allocation, which leads to extra transmission time and execution delay, thus resulting in the decrease of the total task completion rate. In order to solve the above problem, a two-dimensional dynamic matching algorithm based on preference is proposed to optimize the resource allocation decision in MEC system. The data of the position of a mobile user in MEC system and the calculation amount required by a task in one time slot is sent to the edge server. The preference table of the edge server for the mobile user is formed according to the set preference value. At the same time, the preference table for all the edge servers is formed by the mobile user according to different physical distances. The two preference tables are combined to form a two-dimensional dynamic preference table, which is abstracted into a two-dimensional matrix. The two-dimensional matrix is processed by a two-dimensional dynamic matching algorithm based on preference, and the matching optimization results of mobile users and edge servers are obtained. The simulation results show that compared with the conventional MEC scene unloading algorithm, the preference-based two-dimensional dynamic matching algorithm can effectively alleviate the problem of the decrease of the total task completion rate in a large number of sudden task scenes, and can achieve the total task completion rate of more than 60% in extreme cases.
  • 图  1   密集任务条件下MEC模型

    Figure  1.   Mobile edge computing model under intensive task conditions

    图  2   不同MEC资源分配算法总任务完成率对比

    Figure  2.   The results of comparison of different mobile edge computing resource allocation algorithms on task completion rate

  • [1] 谢人超,廉晓飞,贾庆民,等. 移动边缘计算卸载技术综述[J]. 通信学报,2018,39(11):138-155. DOI: 10.11959/j.issn.1000-436x.2018215

    XIE Renchao,LIAN Xiaofei,JIA Qingmin,et al. Survey on computation offloading in mobile edge computing[J]. Journal on Communications,2018,39(11):138-155. DOI: 10.11959/j.issn.1000-436x.2018215

    [2] 王国法,赵国瑞,胡亚辉. 5G技术在煤矿智能化中的应用展望[J]. 煤炭学报,2020,45(1):16-23.

    WANG Guofa,ZHAO Guorui,HU Yahui. Application prospect of 5G technology in coal mine intelligence[J]. Journal of China Coal Society,2020,45(1):16-23.

    [3] 周悦芝,张迪. 近端云计算:后云计算时代的机遇与挑战[J]. 计算机学报,2019,42(4):677-700. DOI: 10.11897/SP.J.1016.2019.00677

    ZHOU Yuezhi,ZHANG Di. Near-end cloud computing:opportunities and challenges in the post-cloud computing era[J]. Chinese Journal of Computers,2019,42(4):677-700. DOI: 10.11897/SP.J.1016.2019.00677

    [4] 邸剑,薛林,蔡震. 基于网联车多跳传输的移动边缘计算卸载[J]. 计算机应用研究,2021,38(4):1145-1148,1157.

    DI Jian,XUE Lin,CAI Zhen. Mobile edge computing offloading based on multi-hop transmission of connected vehicles[J]. Application Research of Computers,2021,38(4):1145-1148,1157.

    [5]

    WANG Feng,XU Jie,WANG Xin,et al. Joint offloading and computing optimization in wireless powered mobile-edge computing systems[J]. IEEE Transactions on Wireless Communications,2018,17(3):1784-1797. DOI: 10.1109/TWC.2017.2785305

    [6]

    LUO Haidong,CAI Hongming,YU Han,et al. A short-term energy prediction system based on edge computing for smart city[J]. Future Generation Computer Systems,2019,101:444-457. DOI: 10.1016/j.future.2019.06.030

    [7]

    XING Jiarong,DAI Hongjun,YU Zhilou. A distributed multi-level model with dynamic replacement for the storage of smart edge computing[J]. Journal of Systems Architecture,2018,83:1-11. DOI: 10.1016/j.sysarc.2017.11.002

    [8] 刘明,龚伟. 基于联合决策模型的物联网边缘计算资源分配[J]. 计算机仿真,2021,38(12):299-303. DOI: 10.3969/j.issn.1006-9348.2021.12.061

    LIU Ming,GONG Wei. Resource allocation of IoT edge computing based on joint decision model[J]. Computer Simulation,2021,38(12):299-303. DOI: 10.3969/j.issn.1006-9348.2021.12.061

    [9]

    FENG Hao,GUO Songtao,ZHU Anqi,et al. Energy-efficient user selection and resource allocation in mobile edge computing[J]. Ad Hoc Networks,2020,107:102202. DOI: 10.1016/j.adhoc.2020.102202

    [10] 张靖,曹鹏飞,郝钟秀,等. 基于过孔调节的多频超材料在无线能量传输中的应用[J]. 传感技术学报,2021,34(4):556-561.

    ZHANG Jing,CAO Pengfei,HAO Zhongxiu,et al. Application of multi-frequency metamaterials based on connection holes adjustment in wireless power transfer[J]. Chinese Journal of Sensors and Actuators,2021,34(4):556-561.

    [11]

    BABAYO A A,ANISI M H,ALI I. A review on energy management schemes in energy harvesting wireless sensor networks[J]. Renewable and Sustainable Energy Reviews,2017,76:1176-1184. DOI: 10.1016/j.rser.2017.03.124

    [12]

    LI Chunlin,CHEN Weining,TANG Jianhang,et al. Radio and computing resource allocation with energy harvesting devices in mobile edge computing environment[J]. Computer Communications,2019,145:193-202. DOI: 10.1016/j.comcom.2019.06.001

    [13] 刘海荣. 探索智能化建设新思路 打造行业高效发展新典范−国家能源集团神东榆家梁煤矿智能矿山建设经验[J]. 智能矿山,2021,2(3):28-33.

    LIU Hairong. Explore new ideas of intelligent construction and build a new model of efficient development in the industry:experience of intelligent mine construction in Shendong Yujialiang Coal Mine of National Energy Group[J]. Intelligent Mine,2021,2(3):28-33.

    [14]

    WU Gaoxiang,MIAO Yiming,ZHANG Yu,et al. Energy efficient for UAV-enabled mobile edge computing networks:intelligent task prediction and offloading[J]. Computer Communications,2020,150:556-562. DOI: 10.1016/j.comcom.2019.11.037

    [15]

    HUANG Binbin,LI Zhongjin,XU Yunqiu,et al. Deep reinforcement learning for performance-aware adaptive resource allocation in mobile edge computing[J]. Wireless Communications and Mobile Computing,2020,2020:1-17.

    [16]

    WANG Xiaojie,NING Zhaolong,GUO Song. Multi-agent imitation learning for pervasive edge computing:a decentralized computation offloading algorithm[J]. IEEE Transactions on Parallel and Distributed Systems,2021,32(2):411-425. DOI: 10.1109/TPDS.2020.3023936

    [17] 张开元,桂小林,任德旺,等. 移动边缘网络中计算迁移与内容缓存研究综述[J]. 软件学报,2019,30(8):2491-2516.

    ZHANG Kaiyuan,GUI Xiaolin,REN Dewang,et al. Survey on computation offloading and content caching in mobile edge networks[J]. Journal of Software,2019,30(8):2491-2516.

    [18] 刘文彬,杨波,钟敏娟. 考虑用户偏好的启发式动态共乘匹配算法[J]. 计算机应用研究,2022,39(1):75-79.

    LIU Wenbin,YANG Bo,ZHONG Minjuan. Heuristic dynamic ridesharing matching algorithm considering user preferences[J]. Application Research of Computers,2022,39(1):75-79.

图(2)
计量
  • 文章访问数:  175
  • HTML全文浏览量:  33
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-09
  • 修回日期:  2022-02-27
  • 网络出版日期:  2022-04-24
  • 刊出日期:  2022-04-24

目录

    /

    返回文章
    返回