基于自研设备高温源诱发甲烷爆炸特性研究

Research on characteristic of methane explosion induced by high-temperature source based on self-developed equipment

  • 摘要: 采用自主研制的高温源诱发可燃气体爆炸实验系统,模拟高温源诱发甲烷爆炸,对比了高温源和电火花2种诱发方式下甲烷爆炸特性参数的异同。结果表明:高温源诱发方式下甲烷爆炸极限为5.5%~14.5%,电火花诱发方式下为5%~15.5%,高温源诱发方式在爆炸极限边界处更难引爆甲烷;电火花诱发方式下甲烷爆炸具有比高温源诱发方式更明显的温度梯度,在不同甲烷浓度下,高温源诱发方式引爆甲烷时最大爆炸压力均大于电火花诱发方式;高温源诱发方式下最大爆炸压力对应的甲烷体积分数为14.5%,电火花诱发方式下为9.5%和14.5%;各甲烷浓度下高温源诱发方式引爆甲烷时升压时间均大于电火花诱发方式。

     

    Abstract: A self-developed experimental system for high-temperature source-induced flammable gas explosion was used to simulate methane explosion induced by high-temperature source. Similarities and differences of methane explosion characteristic parameters between high-temperature source induction mode and electric spark induction mode were compared. The results show that methane explosion limit range under high-temperature source induction mode is 5.5%-14.5%, and that under electric spark induction mode is 5%-15.5%. It is more difficult for high-temperature source to detonate methane at explosion limit boundary. The methane explosion induced by electric spark has a more obvious temperature gradient than that induced by high-temperature source. The maximum explosion pressure of methane explosion induced by temperature source is higher than that induced by electric spark at different methane concentration. Methane concentration of the maximum explosion pressure under high-temperature source induction mode is 14.5%, while that under electric spark induction mode is 9.5% and 14.5%. Pressure boosting time of methane explosion induced by high-temperature source is larger than that induced by electric spark at each methane concentration.

     

/

返回文章
返回