基于变差函数和局部方差图的煤岩图像纹理特征提取

黄蕾, 郭超亚

黄蕾,郭超亚.基于变差函数和局部方差图的煤岩图像纹理特征提取[J].工矿自动化,2018,44(4):62-68.. DOI: 10.13272/j.issn.1627-251x.17311
引用本文: 黄蕾,郭超亚.基于变差函数和局部方差图的煤岩图像纹理特征提取[J].工矿自动化,2018,44(4):62-68.. DOI: 10.13272/j.issn.1627-251x.17311
HUANG Lei, GUO Chaoya. Texture feature extraction of coal-rock image based on variogram and local variance image[J]. Journal of Mine Automation, 2018, 44(4): 62-68. DOI: 10.13272/j.issn.1627-251x.17311
Citation: HUANG Lei, GUO Chaoya. Texture feature extraction of coal-rock image based on variogram and local variance image[J]. Journal of Mine Automation, 2018, 44(4): 62-68. DOI: 10.13272/j.issn.1627-251x.17311

基于变差函数和局部方差图的煤岩图像纹理特征提取

基金项目: 

国家重点研发计划项目(2016YFC0801800)

国家自然科学基金项目(51674269)

详细信息
  • 中图分类号: TD67

Texture feature extraction of coal-rock image based on variogram and local variance image

  • 摘要: 针对现有煤岩纹理特征提取采用局部二值模式算法存在分类准确率欠佳、算法运行效率较低及旋转纹理识别鲁棒性较差等缺陷,提出了一种基于变差函数和局部方差图的煤岩纹理特征提取算法。该算法首先在局部二值模式理论框架中逐像素计算局部方差得到局部方差图,然后在局部方差图中利用变差函数计算不同方向的变差函数向量,最后组合变差函数向量作为纹理特征,将所提取特征与局部二值模式特征融合完成煤岩纹理分类与识别。实验结果表明,该算法能够有效地提取局部方差的空间分布信息,实现对局部二值模式丢失信息的再利用,分类结果优于多种经典的局部二值模式纹理特征提取算法,分类准确率达到86%。
    Abstract: In view of problems of low classification accuracy and algorithmic running efficiency and poor robust property of rotation texture recognition existed in local binary patterns for texture feature extraction of coal-rock, a texture feature extraction algorithm of coal-rock image based on variogram and local variance image was proposed. Firstly, local variance image was got by calculating local variance with pixel by pixel in theoretic framework of local binary patterns. Then, the variogram vectors with different direction were calculated by variogram in local variance image. Finally, combination variogram vectors were taken as the texture feature, classification and recognition of texture of coal-rock was realized combining the texture feature and local binary patterns feature. Experiment results show that the algorithm can effectively extract spatial distribution information of the local variance image, realize information reuse missed by local binary patterns, and its classification results are better than other algorithms of texture extraction based on local binary patterns, the classification precision reaches 86%.
  • 期刊类型引用(10)

    1. 常聚才,戚鹏飞,陈潇. 基于特征优选和随机森林的掘进机多工况截割岩石硬度识别. 煤炭学报. 2023(02): 1070-1084 . 百度学术
    2. 董文豪,张怀. 基于迁移学习的岩屑岩性识别. 中国科学院大学学报. 2023(06): 743-750 . 百度学术
    3. 贺艳军,李海雄,胡淼龙,薛竞飞. 煤岩识别技术发展综述. 工矿自动化. 2023(12): 1-11 . 本站查看
    4. 张强,张润鑫,刘峻铭,王聪,张赫哲,田莹. 煤矿智能化开采煤岩识别技术综述. 煤炭科学技术. 2022(02): 1-26 . 百度学术
    5. 张荣华. 基于LSM和RELBP的煤岩识别方法探讨. 计算技术与自动化. 2021(01): 109-113 . 百度学术
    6. 范思萌,王梅,杨二龙,孙先达. 基于SVM-FTVGG16的岩屑检测方法. 现代电子技术. 2021(20): 103-106 . 百度学术
    7. 宋卫虎,郎利影,张步勤,郜亚松,张雷,张永健. 基于改进U-net网络模型的煤矸识别方法. 智能矿山. 2021(03): 63-68 . 百度学术
    8. 高峰,殷欣,刘泉声,黄兴,伯音,张全太,王心语. 基于塔式池化架构的采掘工作面煤岩图像识别方法. 煤炭学报. 2021(12): 4088-4102 . 百度学术
    9. 张斌,苏学贵,段振雄,常立宗,王福周. YOLOv2在煤岩智能识别与定位中的应用研究. 采矿与岩层控制工程学报. 2020(02): 94-101 . 百度学术
    10. 汤永清,张新红,陈虹微,王悦新. 多维彩色图像局部模糊特征自动滤波系统设计. 现代电子技术. 2020(14): 142-145 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  69
  • HTML全文浏览量:  14
  • PDF下载量:  10
  • 被引次数: 17
出版历程
  • 刊出日期:  2018-04-09

目录

    /

    返回文章
    返回